

Search for the rare $B^-\to\Lambda\bar{p}\nu\bar{\nu}$ decay at the BABAR experiment

Robert Seddon

McGill University

Faculty of Canadiar Association **/ledic**ine

Faculté de médecine

Physicist Congress Sudbury, 16 June 2014 **Faculty of** Medicine Faculté de médecine

Search for the rare $B^- \to \Lambda \bar{p} \nu \bar{\nu} decay$ at the BABAR experiment

Outline

- •The BaBar experiment
- • $B^- \to \Lambda \bar{p} \nu \bar{\nu}$ theory and motivation
- •Analysis method hadronic tag reconstruction Faculty of Faculté de
- •Analysis mether- signal selection Medicine médecine
- •Preliminary results

•Conclusion and next steps

Faculty of Medicine Faculté de médecine

The BABAR experiment - PEP-II collider

PEP-II: Located at the SLAC National Accelerator Laboratory, California. Provides electrons and positrons for collision inside BABAR detector.

•BABAR collected data from 1999 to 2008 •Produced 471 million $B\bar{B}$ pairs •429 fb⁻¹ integrated luminosity at Y(4S) resonance

The BABAR experiment - detector

Canadian groups: U.Victoria, UBC, U. de Montréal, McGill U.

CAP Congress, 16 June 2014

$B^-\to \Lambda\bar{p}\nu\bar{\nu}$ - details and motivation

C.Q. Geng,Y.K. Hsiao. Phys. Rev. D 85 (2012) 094019

Predict $\mathcal{B}(B^- \to \Lambda \bar{p} \nu \bar{\nu}) = (7.9 \pm 1.9) \times 10^{-7}$

Rare decay (suppressed by the standard model)
New physics potentially hiding in loops - will affect branching fraction

•Amenable to further study: angular asymmetries, T-odd observables *etc*.

 $\begin{array}{l} B^- \to K^- \nu \bar{\nu} \\ \text{Measured: <3.7 x 10^{-5}} \\ \text{Predicted: (4.5 \pm 0.7) x 10^{-6}} \\ & \text{Phys. Rev. D 87 (2013) 112005} \end{array}$

Analysis method - hadronic B_{tag}

signature shan be sunounded by the recommended minimum clear space to separate it from other text and graphic elements. The minimum shield

is equal to one-mail the width of the shield or equal to the width of the gap in the top of the letter M.

hadrons". B_{tag} **Y(4S**) D_{sig} Bsig Everything else in the event, including missing energy, that isn't assigned to the B_{tag} is assumed to come from the B_{sig}

■ B⁼ Incorporation of $\rightarrow \Lambda \bar{p} \nu \bar{\nu}$ unit names i $B^- o K^- \nu \bar{\nu}$ the Signature The names of factories, depart $p \bar{p}(ar{K}^{(*)},\pi,
ho)$ Ā $\rightarrow p\bar{p}(I)$ University may be displayed with the University dignature in the $p\bar{p}D^{(*)0}$ B^0 $\rightarrow p \bar{p} I$ These addition $\mathcal{B}_{\text{lements must}}^{\text{manner shown in the examples.}} \to \Lambda \bar{p} \nu \bar{\nu})$ $\mathcal{B}(B)$ be set in the typeface Univers 2bold. ICC will prepare the \mathcal{M} $\propto 1/m_{B\bar{B}}^2$ BBappropriate texts upon-request. DD $\mathbf{B}B$ B_{tag} Advantages: $B_{sig} \xrightarrow{B^-} \rightarrow \Lambda \bar{p} \nu \not{D}_{tag}$ •Completely separates \underline{B}_{tag} from $\underline{B}_{sig} \xrightarrow{B}_{sig}$ •Fully determines kinematics of $\underline{B}_{sig} \xrightarrow{E}_{sig}$ •Missing energy and a Bother particles $\bar{p}\pi v, \bar{p}$ assigned to Bello! $B\bar{B}^{0} \to p\bar{p}Dp^{0}$ •Eliminates background $\mathcal{B}(B^- \to \Lambda pollo)!$ $B^$ hello! $\propto 1/m_{B\bar{B}}^2$ Disadvantages: Low efficiency $\mathbf{B}B$ B_{tag} 6/13 B_{sia}

CAP Congress, 16 June 2014

Analysis method - Monte Carlo simulation

Use Monte Carlo data and detector simulation to perform analysis.
Signal Monte Carlo weighted to match theoretically-predicted phase space constraints.

Analysis method - continuum suppression

Use a multivariate likelihood to measure the shape of the event:

CAP Congress, 16 June 2014

Analysis method - extra energy

Extra energy - in theory represents energy deposits from neutral particles, in reality can be:

showers from decay products
misassignment of B-meson daughters
real neutral particles

THE AUT THE AUTHO

BAnalysia prethod - PID, lambda reconstruction

Signal selection - preliminary results

B _{tag} side cuts: One B _{tag} Correct charge		~7 background events ~0.04% signal efficiency
Reconstructed B mass Continuum likelihood		Expect branching fraction upper limit on the order of <10 ⁻⁵ .
	Distance of closest approach	

CAP Congress, 16 June 2014

Conclusion

•Searching for new physics in form of $B^-\to\Lambda\bar{p}\nu\bar{\nu}$ decay - never

been experimentally measured before

•Rare decay - good probe to test for new physics

Next steps

•Finalise optimisation of signal selection cuts

- •Quantify systematic errors
- •Unblind data
- •Measure branching fraction limit
- •Publish

CAP Congress, 16 June 2014