The ν and $\bar{\nu}$ interaction rate measurements in the T2K near detector

16th June 2014, Anthony Hillairet for the T2K collaboration
The T2K experiment was designed to measure neutrino oscillations:

- ν_e appearance
 $\Rightarrow \sin^2(2\theta_{13})$

- ν_μ disappearance
 $\Rightarrow \sin^2(2\theta_{23})$ and $|\Delta m^2_{32}|$

- look for CP violation in the neutrino sector
The T2K detection system is composed of multiple components:

- INGRID, near detector on-axis for neutrino beam monitoring
- Super-Kamiokande (SK) at 295km and off-axis to detect neutrinos after oscillation
- ND280, near detector off-axis measures neutrino interaction rate of the unoscillated beam going to SK
The T2K detection system is composed of multiple components:

- **INGRID**, near detector on-axis for neutrino beam monitoring
- **Super-Kamiokande (SK)** at 295km and off-axis to detect neutrinos after oscillation
- **ND280**, near detector off-axis measures neutrino interaction rate of the unoscillated beam going to SK
ND280, the T2K off-axis near detector

ND280 measures the characteristics of the unoscillated neutrino beam:

- 0.2T magnetic field
- Central component is the tracker
 Composed of 3 TPCs and 2 FGDs
- π^0 dedicated detector
 \Rightarrow P0D
- Electromagnetic calorimeters
 \Rightarrow ECAL
- Yoke instrumented with scintillators
 \Rightarrow Side Muon Range Detectors (SMRDs)
Fine-Grained Detectors (FGDs)

- 2 FGDs serving as active targets
 - FGD1: Layers of X and Y scintillator bars
 - FGD2: Layers of X and Y scintillator bars alternated with water layers
 - Provides detailed vertex information
 - Multi-Pixel Photon Counter

Made at TRIUMF
3 identical TPCs:
- filled with argon (95%), CF$_4$ (3%), isobutane (2%)
- MicroMegas detectors
- Perform momentum reconstruction and particle identification

\[\text{Probability of identifying } \mu \text{ as electron } < 0.2\% \ (p < 10\text{GeV/c}) \]
Neutrino interactions of interest

To characterize the ν_μ component of the beam, we start by looking for μ^- from charged-current (CC) interactions

$\nu \rightarrow CC$ inclusive selection

Due to pion absorption before it leaves the nucleus, we analyzes the CC events according to the topologies of various number of outgoing pions:

- **CC0π:** No pion observed
- **CC1π^+:** One positive pion observed
- **CC-Other:** All other CC interactions
One μ^- from FGD1 crossing TPC2 \Rightarrow CC inclusive sample
2013 ND280 ν_μ event selection

One μ^- from FGD1 crossing TPC2 \Rightarrow CC inclusive sample

- No pions found \Rightarrow CC0π sample
- $1\pi^+$ found \Rightarrow CC1π^+ sample
- $> 0\pi^0$ or
- $> 0\pi^-$ or
- $> 1\pi^+$ found \Rightarrow CC-Other sample
2013 ND280 ν_μ event selection

Particle identification using dE/dx in FGD1 and TPCs

Momentum and charge reconstruction in TPCs

One μ^- from FGD1 crossing TPC2 \Rightarrow CC inclusive sample

- No pions found \Rightarrow CC0\pi sample
- 1\pi^+ found \Rightarrow CC1\pi^+ sample
- > 0\pi^0 or > 0\pi^- or > 1\pi^+ found \Rightarrow CC-Other sample
2013 results, $6.30 \times 10^{20} POT$ of ν beam data

Data/MC distributions before any fit

<table>
<thead>
<tr>
<th></th>
<th>CC-0π</th>
<th>CC-1π</th>
<th>CC-Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC-0π</td>
<td>72.6%</td>
<td>6.4%</td>
<td>5.8%</td>
</tr>
<tr>
<td>CC-1π</td>
<td>8.6%</td>
<td>49.4%</td>
<td>7.8%</td>
</tr>
<tr>
<td>CC-Other</td>
<td>11.4%</td>
<td>31.0%</td>
<td>73.8%</td>
</tr>
<tr>
<td>Bkg (NC+$\bar{\nu}_\mu$)</td>
<td>2.3%</td>
<td>6.8%</td>
<td>8.7%</td>
</tr>
<tr>
<td>Out FGD1 FV</td>
<td>5.1%</td>
<td>6.5%</td>
<td>3.9%</td>
</tr>
</tbody>
</table>

Bkg (NC+$\bar{\nu}_\mu$) + Out FGD1 FV = 9.12% of CC inc.
From the 2013 to the 2014 ND280 analysis

The 2013 analysis had many limitations:

- Only FGD1 used as neutrino target
 \[\implies\] only the neutrino cross section on carbon is measured

- Only CC interactions producing forward-going muons were selected
 \[\implies\] phase space very different from Super-Kamiokande’s \(4\pi\) acceptance

Many improvements have been made to the calibration and the reconstruction software for the 2014 analysis.
FGD-ECal track matching improved \rightarrow increased reconstruction efficiency for tracks not crossing the TPCs
FGD-ECal track matching improved \implies increased reconstruction efficiency for tracks not crossing the TPCs

Events with μ^- at high angle can now be more efficiently reconstructed and selected in a CC inclusive sample.

Use momentum by range in ECals and SMRDs to get the μ^- momentum.

Pions are identified like for the 2013 analysis to create CC0π^-, CC1π^+ and CCOther samples as well.
Inter-detector timing calibration
⇒ track sense determination possible
Inter-detector timing calibration
⇒ track sense determination possible

New possibility to select backward going μ^-

Only ~ 2000 events in the available ND280 data
⇒ CC inclusive only, no sub-samples
The acceptance of the FGD1 selection will be greatly increased in 2014 thanks to software improvements.
The acceptance of the FGD1 selection will be greatly increased in 2014 thanks to software improvements.

FGD2 contains water layers between the scintillator layers.

⇒ The FGD2 measurement will provide constraints on the neutrino cross section on oxygen.
New data: $\bar{\nu}$ beam mode started!

- T2K will now measure $\bar{\nu}_\mu$ disappearance, $\bar{\nu}_e$ appearance \implies search for CP violation
- T2K taking data in anti-neutrino beam mode since 5th June
- First $\bar{\nu}_\mu$ event candidate found in FGD2:
ND280 $\bar{\nu}_\mu$ measurement crucial for T2K

- $\bar{\nu}_\mu$ cross section has never been measured at T2K E_ν range

- Expected $\sigma_{\bar{\nu}_\mu} \sim \frac{1}{3} \sigma_{\nu_\mu}$
 \Rightarrow ν_μ interaction rate not negligible compared to $\bar{\nu}_\mu$

- SK is a water Cherenkov detector
 \Rightarrow No reconstruction of lepton charge

- ND280 has charge reconstruction from the TPCs
 \Rightarrow ND280 can measure the interaction rate ratio $\bar{\nu}_\mu/\nu_\mu$
Summary

The ND280 measurements of the neutrino and anti-neutrino beams are crucial to the T2K neutrino oscillation measurement.

- The software and calibration improvements will provide a 4π acceptance and FGD2 measurement (with oxygen).
- We are getting ready to analyze the new anti-neutrino beam mode data.
- All these new measurements from ND280 will be used in a fit to improve constraints on flux and cross section at SK.

⇒ See Jordan’s talk next.
Thank you for your attention!
Improved matching of low momentum tracks from TPCs

\[\nu \rightarrow \mu^- \text{ or } \pi^+ ? \]

increased reconstruction efficiency for out-of-fiducial volume background
Improved matching of low momentum tracks from TPCs
\rightarrow increased reconstruction efficiency for out-of-fiducial volume background

Inter-detector timing can help identify backward going background

More than 90% of this background is rejected by track sense determination
Flux in anti-neutrino beam mode

Beam flux prediction

Flux (cm²/100MeV/10²POT)

$\bar{\nu}_\mu$

$\bar{\nu}_e$

ν_μ

ν_e

E (GeV)
After the muon has been identified, the TPC particle identification (PID) is slightly modified:

- Possible types for negative particles: electron or pion
- Possible types for positive particles: positron, proton or pion

Special case:
if \(\text{PID} = \text{positrons} \) & \(p > 900 \text{ MeV/c} \) \(\Rightarrow \) reclassify as a proton
TPC PID for secondary tracks

e\(^+\) candidate

\(\pi^+\) candidate

\(\pi^-\) candidate

e\(^-\) candidate

Positive Pion Momentum candidate TPC (MeV/c)

Electron Momentum candidate TPC (MeV/c)
FGD PID for secondary tracks

Also in FGD1, the dE/dx information provides very good separation between protons and pions:

FGD secondary track selection:

1. Select FGD tracks fully contained in FGD1
2. Use measured dE/dx to select π-like tracks

Before FGD PID selection

After FGD PID selection
ND280 $\bar{\nu}_\mu$ measurement started in ν beam

- The $\bar{\nu}_\mu$ contamination in the neutrino beam mode was used to develop an $\bar{\nu}_\mu$ selection

- Start with 2013 CC inclusive selection but select positive muons instead

- The ECals particle identification is used to reduce the positive pions and protons background from the ν_μ interactions

CC inclusive selection:
- Purity $\sim 50\%$
- Preliminary result show consistency with Monte Carlo prediction
ND280 $\bar{\nu}_\mu$ measurement started in $\bar{\nu}$ beam

- Again start with 2013 CC inclusive selection but selecting positive muons instead
- CC0π sample purity at 74% even without using ECAl information
- CC1π and CCOther have contamination from ν_μ interactions
 \[\Rightarrow\text{ We may use a } \text{CC}n\pi, \ n > 0, \text{ sample instead}\]

\[\Rightarrow\text{ Ready to analyze data being collected now}\]