Track-based alignment of the ATLAS Inner Detector: Run I performance & new extensions for the next physics data run

> M. Danninger for the ATLAS Collaboration Canadian Association of Physicists Congress 2014

The ATLAS detector

Outline:

- Introduction
- Why is alignment a problem
- Methodology track based alignment
- Run I results and performance
- Integration of IBL
- Looking ahead Run II

Inner detector: Pixel/SCT/TRT

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Introduction

2014-06-18

The Inner Detector:

Requirements:

- good p_T resolution (<30% at 500 GeV p_T)
- good impact parameter resolution
 —> b-tagging performance

Alignment challenges:

- huge number of d.o.f.
 PIX: 1744 SCT: 4088 TRT: 350848
- Different scales of resolution PIX: O (10 μm) SCT: O (30 μm) TRT: O (140 μm)

Track based alignment algorithm

residuals

real track

updated position

The χ^2 of the track fit is sensitive to detector misalignments, i.e. for a single hit:

$$\chi_i^2 = \left(\frac{|\mathbf{x}_i^{meas} - \mathbf{x}_i^{fit}|}{\sigma_i}\right)^2 = \left(\frac{r(\vec{\tau}, \mathbf{a})}{\sigma_i}\right)^2$$

The residual depends on:

- Track parameters *t*
- Alignment parameters **a** (3 translations + 3 rotations)

Collect large number of events (tracks) —> sum over all hits:

- The χ^2 is minimized when detector elements are at true position
- $rac{d\chi^2}{d\mathbf{a}}=\mathbf{0}$

refitted track

residuals

real track

• Approx. with Taylor expansion around $a_0 \rightarrow$ correction Δa

Global χ^2 : A simultaneous optimization (fit) of both track parameters and detector element positions is performed

Local χ^2 : After fitting tracks, attempt is made to match detector positions accordingly (inherently iterative)

Alignment Levels

Multistage alignment following the assembly structure:

• run by run alignment to monitor environmental changes

Level 2 — Disks/Staves:

 generally enough to achieve "good" precision -> residuals minimized

Level 3 — Si-Modules/TRT-straws:

large statistics needed
 —> used to eliminate "weak modes"

	structures			Corr. Size
	pixel	SCT	TRT	μm
Level 1	1	3	3	1000
Level 2	12	22	96	100
Level 3	1744	4088	350848	10

2014-06-18

	struc	DoFs			
	pixel	SCT	#		
Level 1	1	3	24		
Level 2	12	22	204		
Level 3	1744	4088	34992		

vel 1 (4 estr	ucturas)	
	Pixel Barril	
SCT ECC	SCT Barril SC	TECA

	TF	RT	DoFs
	Barrel	End cap	#
Level 1	1	2	18
Level 2	96	80	1056
straw	105088	245760	701696

Weak Modes & constraints

UBC

Global distortions which preserve the helical trajectory of tracks and leave the χ^2 unchanged are known as "weak modes":

• The distortions are difficult to remove by the alignment algorithms

Extra data is necessary to constrain these modes:

- Beam spot constraint (used as additional track constraint)
- Mass of resonances (M_Z , K_S^0)
- Use of external detectors (E/P)
- Other event classes, i.e. Cosmic data (through-going tracks)

Alignment results: Residuals (Silicon)

- Residuals match well between data and MC
- Indicates the algorithms are working correctly
- Remaining difference most likely not due to misalignment alone (e.g. intrinsic detector resolution model)

Local x residual distributions:

The Pixel & SCT local x residual distribution for the Z —> $\mu\mu$ data sample reconstructed with 2012 alignment constants, compared to MC simulations. Distributions are integrated over all hits-on-tracks

Alignment results: Radial distortions

Fit of the B-field direction from data:

- A tilt of the solenoid field was found as a bias in the Ks and J/ ψ masses vs. ϕ
- Corrected by rotating the magnetic field in reconstruction by +0.55 mrad around the x-axis

(Ref: ATLAS-CONF-2012-141)

Alignment results: Sagitta bias

9

Momentum bias can be monitored:

- Cosmic data
- Mass resonances (Z —> $\mu\mu$) & E/p for opposite charge tracks

2014-06-18

(*Ref: ATL-COM-PHYS-2012-1520*) 10

Matthias Danninger — CAP

ID-upgrade for Run II — IBL

The new IBL poses a new challenge to the ID alignment

- New mechanically independent structure, integrated into Pixel detector
- 14 staves with average radius of 3.3 cm
- Pixel technology & novel 3D sensors
- Level 1 alignment has one additional independent structure
- Levels 2 & 3 more straight forward (additional layers & models)
- Software integration finished:
 - Monitoring
 - Data base structure

Run II alignment closure tests being performed:

- misalignment is introduced in MC
- Δa corrections recovered

Diamond Beam Monitor (DBM):

 Telescopes of diamond detectors in forward regions

—> see next talk for more details

Matthias Danninger — CAP

Serves as input for first collision data alignment for Run II

Run I performance:

- Final alignment constants show very good agreement between data & MC in physics observables
- Physical detector movements tracked down
- Many weak modes have been eliminated

Run II preparations:

- Alignment framework prepared
- IBL fully integrated
- Investigate possibility to run level 2 alignment in Calibration loop
- More detailed modelling & integration of individual module distortions

Pre Run II alignment:

Backup

2014-06-18