15–20 Jun 2014
Laurentian University / Université Laurentienne
America/Toronto timezone
Welcome to the 2014 CAP Congress! / Bienvenue au congrès de l'ACP 2014!

Search for the Standard Model Higgs boson produced in association with top quarks in pp collisions at 8 TeV with the ATLAS detector at the LHC

17 Jun 2014, 10:00
15m
C-112 (Laurentian University / Université Laurentienne)

C-112

Laurentian University / Université Laurentienne

Sudbury, Ontario
Oral (Student, In Competition) / Orale (Étudiant(e), inscrit à la compétition) Particle Physics / Physique des particules (PPD) (T1-1) Energy Frontier: Higgs Properties - PPD-DTP / Frontière d'énergie : propriétés du boson de Higgs - PPD-DPT

Speaker

Steffen Henkelmann (University of British Columbia (CA))

Description

The physics program of the ATLAS experiment pursued at the Large Hadron Collider (LHC) at CERN succeeded in the observation of a new particle in the search for the Standard Model Higgs boson. The Higgs boson production in association with a top-quark pair provides key features to further investigate the nature of the Higgs boson. Its coupling to other bosons was discovered and evidence for its coupling to fermions is given. The associated $t\bar{t}H$ production with the Higgs decay into two bottom quarks provides a good opportunity to probe its coupling strength to top and bottom quarks in the production and decay, respectively. In order to improve the signal sensitivity of the search, multivariate analysis techniques are used to enhance the background and signal separation power relying on robust signal and background models. Therefore, dedicated studies of the $t\bar{t}H$ signal predictions by various Monte Carlo generators at different orders in QCD perturbation theory including differing features and the evaluation of systematic uncertainties assessed to the signal model were studied. The search for the $t\bar{t}H$ ($H \to b\bar{b}$) in pp collisions at ATLAS is presented. The analysis is based on the 8 TeV data recorded during Run I of the LHC and corresponds to an integrated luminosity of 20.3 $\rm fb^{-1}$.

Primary author

Steffen Henkelmann (University of British Columbia (CA))

Presentation materials