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Correlated metals are often Fermi liquids at low ω,T

Sr2RuO4

Bergemann et al., 2000

experiments, one value of lfree (as tabulated in table 5) is sufficient to reproduce the
experimental Dingle fields for all three sheets, to within about 15–20%. There is
some indication that BD might be slightly enhanced on the b and ! sheets, but at this
stage it is not clear whether this represents a real variation in lfree. We therefore
conclude that to within a reasonable degree and within our experimental resolution,
the mean free path is constant in Sr2RuO4.

5.6. Visualization
The resulting Fermi surface topography is visualized in figure 28. The numbers

in table 4 represent a refinement of an earlier parameter set published previously
in tabular [4] and graphical [77] form.15

5.7. Consistency checks
5.7.1. Resistivity anisotropy

The experimental resistivity anisotropy of "0, c="0, ab ’ 4000 (cf. table 3) has
to match the anisotropy expected from the Fermi surface geometry. Following
equation (17), one can compute the resistivity ratio from

"0, ab
"0, c

¼ 2

AFS

I

FS
d2kûu2Fz

ðkÞ ð41Þ

15Some corrections to those old results were necessary because the warping parameters were
initially extracted in the circular Fermi contour approximation. The numerically more challenging full
calculation yields the refined results presented here.

Figure 28. Visualization of the Fermi surface of Sr2RuO4. The c-axis corrugation is
exaggerated by a factor of 15 for clarity.

C. Bergemann et al.688

Bergemann et al., 2003 Damascelli et al., 2000
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But trouble can begin at only a few meV

CaRuO3
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What sets the Fermi liquid scale?
Anomalous power law conductivity in ruthenates and cuprates

SrRuO3
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Y-doped BSCCO

van der Marel et al., Nature 2003

σ(ω,T ) =
A

(1/τ(T )− iω)α
, α < 1
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Basic properties of MnSi
A Fermi liquid with a low characteristic energy scale

I Quantum oscillations 3

I ρ(T ) = ρ0 + AT 2 3

I σ1(ω) ∝ ω−α, α ∼ 0.5 (IR) 7

I QPT at p = 14.6 kbar
I B20 structure, lacks inversion
I Helimagnet, TC ∼ 30 K
I Skyrmion excitations

that non-Fermi-liquid phases of metals may exist in some heavy-
fermion compounds1,2 and oxide materials3–6, but the discovery
of a characteristic microscopic signature of such phases presents
a major challenge. The transition-metal compoundMnSi above a
certain pressure (p c 5 14.6 kbar) provides what may be the
cleanest example of an extended non-Fermi-liquid phase in a
three-dimensional metal7–9. The bulk properties of MnSi suggest
that long-range magnetic order is suppressed at p c (refs 7–12).
Here we report neutron diffraction measurements of MnSi,
revealing that sizeable quasi-static magnetic moments survive
far into the non-Fermi-liquid phase. These moments are organ-
ized in an unusual pattern with partial long-range order. Our
observation supports the existence of novel metallic phases with
partial ordering of the conduction electrons (reminiscent of
liquid crystals), as proposed for the high-temperature supercon-
ductors4–6 and heavy-fermion compounds13.
The identification of novel metallic phases, as opposed to

complicated crossover phenomena, has become controversial for a
number of reasons. (1) The behaviour is observed in entirely new
classes of materials for which little is known in general. (2) The role
of dimensionality is unclear. (3) Metallurgical complexities exist,
such as chemical segregation and defects. (4) The properties are
extremely sensitive to a careful fine-tuning of the experimental
conditions. (5) Characteristic energy scales are all of similar mag-
nitude, and cannot be distinguished properly; examples are fluctua-
tions of spin, charge or superconducting order in the high-Tc

copper oxides.
The transition-metal compound MnSi is devoid of these com-

plexities. (1) It is a very well-known system, and is perhaps the most
extensively studied itinerant-electron magnet apart from iron,
cobalt, nickel and chromium. (2) A large body of thermodynamic
and microscopic data10–12,14–20 establish the ground state below the
magnetic ordering temperature Tc ¼ 29.5 K as a three-dimensional
weakly spin-polarized Fermi liquid par excellence, with the possible
exception of recent high-frequency optical conductivity exper-
iments21. (3) As a congruently melting compound, MnSi can be
produced at high purity and high crystalline perfection in the cubic
B20 structure. (4) At the first-order magnetic quantum phase
transition at p c ¼ 14.6 kbar, a discontinuous change from Fermi-
liquid behaviour to an extended non-Fermi-liquid (NFL) phase has
been inferred from the resistivity7–9, which is proportional to T1.5

for almost three decades in temperature T from around 6K down to
a few mK and for a large pressure range above p c. This suggests that
the novel behaviour does not require careful fine-tuning. (5) Three
well-separated energy and length scales can be distinguished in
MnSi at all temperatures, pressures and magnetic fields as follows.
First, MnSi has a strong tendency to itinerant ferromagnetism on
length scales of a few lattice constants, a ¼ 4.56 Å, with an ordered
moment of about 0.4 mB per formula unit (where mB is the Bohr
magneton). Second, as the B20 structure lacks an inversion sym-
metry, weak spin–orbit interactions assume a Dzyaloshinsky–
Moriya (DM) form,

R
Sz(f £ S) dr, which (being linear in momen-

tum) destabilizes the uniform ferromagnetic order and introduces a
well-understood22,23 helical modulation of a long wavelength 175 Å
at ambient pressure. (Here S(r) is the space dependent magnetiza-
tion.) Third, in the ordered phase, further spin–orbit interactions
induced by the cubic crystalline electric fields lock the direction of
the spiral to Q ¼ k111l, where S ’ Q (refs 19, 20, 22, 23). Typical
sizes of magnetic domains in the ordered state are 104 Å (ref. 20).
The locking of the direction of the helix hence represents the
weakest scale.
For our study the helical modulation at ambient pressure proves

to be crucial, because the corresponding Bragg scattering at
jQj ¼ 0.037 Å21 is confined to a tiny volume of reciprocal space,
making it easy to track the magnetic order as a function of pressure.
The experiments were made possible through use of a single-crystal
sample of exceptional structural perfection, which permits the

resolution of the magnetic satellites at high precision. Cold neutron
triple-axis diffraction was performed at the Laboratoire Léon
Brillouin (LLB), and small-angle neutron scattering (SANS) at the
Hahn-Meitner Institut (HMI), Berlin, using a miniature clamp-
type pressure cell (see Methods).

At ambient pressure, we observe resolution-limited magnetic
Bragg reflections of a coherence length y . 2,000 Å at
Q ¼ 0.037 Å21 (111), which are characteristic of conventional
three-dimensional long-range order. This is in excellent agreement
with previous studies19,20. In the temperature versus pressure (T–p)
plane, the magnetic ordering temperature of MnSi at ambient
pressure, Tc ¼ 29.5 K, determined by resistivity and susceptibility
measurements10,11, falls monotonically with pressure, and vanishes
at pc ¼ 14.6 kbar in a first-order transition, indicative of a collapse
of the static ordered magnetic moments10 (see Fig. 1). For the
pressure range of interest, the lattice constant changes by only a few
tenths of a per cent only in agreement with the compressibility14,
and at all pressures the lattice mosaic spread remains unchanged,
and is that of an essentially perfect single crystal.

Shown in Fig. 1 is a qualitative illustration of our key result, as we
approach and enter the NFL phase. Below a crossover temperature
T0 and even for pressures well above pc (that is, deep inside the NFL

Figure 1 Schematic temperature T versus pressure p phase diagram of MnSi, and

qualitative illustration of the scattering intensity characteristic of the magnetic state. Data

points of Tc(p) are taken from ref. 10. In the T–p plane, the transition at Tc decreases with

increasing pressure and changes from second-order to weakly first-order at

p* ¼ 12 kbar, before it disappears above pc ¼ 14.6 kbar. It has been argued that above

pc the non-Fermi-liquid (NFL) resistivity r / T 1.5 (which has been observed down to a

few mK near p c) provides evidence of an extended NFL phase (shaded) in a clean three-

dimensional metal7–9. The insets qualitatively show the location and key features of elastic

magnetic scattering intensity in reciprocal space at ambient pressure (left) and at high

pressure (right). Data were collected near the [110] lattice Bragg peak. At ambient

pressure, resolution-limited magnetic Bragg peaks (indicated by the black dots) are

observed at a distance Q ¼ 0.037 Å21, characteristic of three-dimensional long-range

magnetic order, in perfect agreement with previous work. Note that the size of the dots

does not reflect the resolution, and is only chosen for clarity. At high pressure, intensity is

observed below a crossover temperature T0 on the surface of a tiny sphere of radius

Q < 0.043 Å21. The intensity on this surface varies as roughly depicted by the shading,

and is highest around k110l. In the phase diagram, we show that T0 decreases with

increasing pressure, but remains finite at 19 kbar (.pc), the highest pressure studied.

letters to nature

NATURE | VOL 427 | 15 JANUARY 2004 | www.nature.com/nature228 ©  2004 Nature  Publishing Group

Pfleiderer et al., Nature 2004
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Optical conductivity of MnSi
Anomalous power law at low temperatures, pseudogap at high temperatures

σ(ω,T ) =
A

(1/τ(T )− iω)α
,

α ≈ 0.54
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Terahertz conductivity measurements with thin films

Ei(t) Es(t)Sample

Ei(t) Er(t)
Reference
substrate

tsr (ω) ≡ Es(ω)

Er (ω)

=
n + 1

n + 1 + σ(ω)d Z0
ei∆sr (ω)

If substrate mismatch ∆sr (ω) ≈ 0,

σ(ω) =
n + 1
d Z0

[
1

tsr (ω)
− 1
]

Samples: MnSi(111)/Si, d ' 25 nm

J. Steven Dodge (SFU) THz conductivity of MnSi CAP 2014 8 / 19



Temporal shift relates to Drude scattering time
Temporal delay uncertainty of η ≈ ±2 fs dominates conductivity parameter uncertainty

σ ≈ σ0/(1− iωτ) ≈ σ0eiωτ ; t ≈ 1/σ ≈ e−iωτ/σ0
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Complex conductivity of MnSi
Approaches Drude form at T = 6.5 K
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Anomalous power law becomes less anomalous
Approaches Drude form at T = 6.5 K

σ(ω,T ) =
A

(1/τ(T )− iω)α
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Drude extrapolations of ρ0(T )
With comparison to four-probe measurements
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Low-frequency Drude fit yields τ ∗(T )
At T = 6.5 K τ∗ & 500 fs, but it drops rapidly with T to become negative for T & 50 K

0 50 100 150
−100

0

100

200

300

400

500

600
τ*
(f
s)

T(K)

σ(ω) =
ε0ω
∗
p

2

1/τ∗ − iω

≈ ε0ω∗p2(1 + iωτ∗)
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How do we interpret a negative value of τ ∗?
A strong pseudogap in σ1(ω) is associated with a negative slope of σ2(ω)

σ(ω) =
ε0ω
∗
p

2

1/τ∗ − iω
≈ ε0ω∗p2(1 + iωτ∗)

⇒ τ∗ ≡ 1
σ0

dσ2(ω)

dω

∣∣∣∣
ω→0

Kramers-Kronig yields:

τ∗ ≡ 2
π

∫ ∞
0

σ0 − σ1(ω)

σ0ω2 dω
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Measurement of ω∗p
−2 = ε0ρ0τ

∗

Saturation at T ∼ 20 K at ω∗
p ∼ 1 eV, mass enhancement of 4-6
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Fermi liquid theory predicts ω/T scaling
Experiments agree qualitatively, but not quantitatively

For ~ω ≈ 2πkBT , ωτ � 1,

σ(ω) ≈
ε0ω
∗
p

2

1/τqp − iω
, with

~
τqp

=
2

3πkBT0

[
(~ω)2 + (2πkBT )2

]
.

Experiments observe:

~
τqp

=
2

3πkBT0

[
(~ω)2 + b(πkBT )2

]
,

with b ≈ 1, not b = 4.

Expect 1/(ω2τqp) ≈ 9 fs in MnSi (!).

CHRISTOPHE BERTHOD et al. PHYSICAL REVIEW B 87, 115109 (2013)

The factor 1/Z, which has been pulled out in front of !2 in
order to define T0, ensures that in such a case !2 is a scaling
function of T/ZD and ε/ZD.

The right panel of Fig. 1 suggests that the frequency
dependence of the quasiparticle scattering rate is actually
important. A Drude-like optical response with a constant
relaxation time τD ∼ τqp can only be expected to provide a
reasonable description in the very low-frequency or relatively
high-temperature regime h̄ω ! 2πkBT . When h̄ω " 2πkBT ,
the energy dependence of !(ε) cannot be neglected and a
non-Drude response arises, as discussed in the following
section.

We finally note that a real, frequency-independent Hartree
term !1(0,T ) should in fact be added to Eq. (11) for
completeness. It sets the location of the Fermi surface from
Ek = µ − !1(0,T ) and can be viewed as a shift of the
chemical potential, which will be omitted for simplicity in
all equations. An imaginary frequency-independent part can
also be added to mimic the effects of the impurity scattering.
This is considered in Appendix F.

C. Scaling form of the optical conductivity in a
local Fermi liquid

We now show that the optical conductivity obeys a
universal scaling form in terms of the two variables ωτqp and
h̄ω/(2πkBT ). Whereas it reduces essentially to the Drude form
in the low-frequency limit, its full frequency dependence is
markedly different.

The universal scaling form is derived by inserting Eq. (11)
into Eq. (9). The calculations can be performed analytically
and yield

σ (ω) = σdc S

(
h̄ω

2πkBT
,ωτqp

)
, (13a)

σdc = π2

12
Z'(0)τqp, (13b)

S (x,y) = 6
π2x

∫ ∞

−∞
du

[eπ(u−x) + 1]−1 − [eπ(u+x) + 1]−1

1 + x2 − iy + u2
.

The scaling function S is evaluated and displayed in
Appendix C. One obtains

S (x,y) = 6i

π2

1
x r(x,y)

{
ψ

(
1
2

[1 + r(x,y) − ix]
)

−ψ

(
1
2

[1 + r(x,y) + ix]
)}

, (13c)

where r(x,y) =
√

1 + x2 − iy and ψ is the digamma function
defined as ψ(z) = limM→∞[ln M −

∑M
n=0 1/(n + z)].

Equation (13a) emphasizes the emergence of two natural
time/frequency scales: the quasiparticle time τqp, and a
“coherence” time h̄/(2πkBT ). Alternatively, one can reexpress

σ (ω) = σdc S

(
ω̄

T̄
,

ω̄

T̄ 2

)
(14)

with ω̄ ≡ h̄ω/(2πkBT0) and T̄ ≡ T/T0 dimensionless vari-
ables normalized to the basic scale T0. This emphasizes that
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σ
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σ d

c

10−2 10−1 100 101 102

h̄ω/(2πkBT )

ωL

h̄ω = 2πkBT

ωH

T = 0.1T0

FIG. 2. (Color online) Fermi-liquid conductivity (13) at low
temperature (solid lines), below the temperature T1 defined in Fig. 3.
The blue (red) lines show the real (imaginary) part of the conductivity.
The dashed lines show the low-frequency Drude-like behavior given
by Eq. (15). The dotted lines show Eq. (18). The characteristic
frequency scales ωL and ωH correspond to those defined in Fig. 3
and Eq. (20).

the optical conductivity in a Fermi liquid is a scaling function
of ω/T and ω/T 2. Equations (13) constitute the key analytical
result of this article. They replace the Drude formula by a
universal scaling form of these two frequency scales, which
is valid for local Fermi liquids. Let us emphasize that all
high-energy scales such as the bare bandwidth or the plasma
frequency ωp have disappeared from the scaling expression
(13). Instead, only low-energy scales appear, such as T0 and
Z'(0) (the latter is shown below to be related to the low-energy
Drude weight).

In Fig. 2, we plot the real and the imaginary parts of
σ (ω)/σdc as a function of h̄ω/(2πkBT ) on a log-log scale at
a given low temperature T/T0 = 0.1. (The full frequency and
temperature dependencies are shown on a three-dimensional
plot in Appendix C.) Three frequency regimes can be identified
from this plot. (1) At low-frequency ω ! ωL < 2πkBT/h̄
(with ωL to be made precise below, of order τ−1

qp at low temper-
ature), the conductivity follows closely the Drude model, with
a saturation of σ1 below the characteristic frequency τ−1

qp and a
1/ω2 decay above it. τ−1

qp also separates the dissipative regime
(with larger σ1) from the inductive regime (with larger σ2).

(2) When ω approaches 2πkBT/h̄, the conductivity deviates
from the Drude behavior: σ1 displays a pronounced shoulder
with much weaker frequency dependence—the feature appears
as a shoulder in a log-log plot, as a “foot” in a lin-lin plot,
see below. In this “thermal” regime, the conductivity behaves
inductively (σ2 > σ1) rather than dissipatively.

(3) Increasing ω further, leads to a more rapid decay of σ2,
and at ωH (to be defined below), the data become dissipative-
like again (σ1/σ2 > 1). This is actually a consequence of the
assumed unbounded quadratic increase of the scattering rate
with frequency, and might not be physical in this already
high-frequency regime (see Sec. IV). Above ωH, σ1 recovers
a Drude-like 1/ω2 decay, while σ2 turns to 1/ω3. The 1/ω3

behavior is an artifact of extending the ω2 in the self-energy
(11) to high energies.17

115109-4

Berthod et al., PRB 2013.

See also Chubukov and Maslov, PRB 2012.
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Experimental observations in other materials
Characteristic temperature scale T0 sets the relevant scale

Material T0 (K) b
•UPt3 17 < 1
•Ce.95Ca.05TiO3.04 1156 1.72
•Nd.95TiO4 1037 1.1
•URu2Si2 103 1
•Hg1201 719 2.3
•MnSi 180 1–4

UPt3: Sulewski et al., PRB 1988;
(Ce,Ca)TiO3: Katsufuji and Tokura, PRB 1999;

NdTiO4: Yang et al., PRB 2006;
URu2Si2: Nagel et al., PNAS 2012;
Hg1201: Mirzaei et al., PNAS 2013.
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/
T
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h̄ω/2πkBT0

MnSi
URu2Si2
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(Ce,Ca)TiO3

Frequency-dependent 1/τ for
2πkBT ≈ hν:

2πkB(6.5 K) ≈ h(0.85 THz)
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Measurement of Fermi liquid scaling parameter 1/b
Quantitative agreement with theory remains elusive

ρ(ω,T ) ≡ 1/σ(ω,T ) ∝
[
(~ω)2 + b(πkBT )2

]
, b = 4

5 10 15 20 250

0.5

1

1.5

T (K)

1/
b
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Summary

I MnSi exhibits σ(ω,T ) consistent with Fermi liquid theory
I Drude fit gives ω∗p(T ) that saturates for T . 20 K
I Comparison with band theory yields a mass enhancement of 4-6
I For T & 50 K, the slope of σ2(ω) is negative
I Negative slope in σ2(ω) indicates pseudogap in σ1(ω)

I Above T ∼ 10 K, b ≈ 1, quantitatively inconsistent with FLT
I Possible evidence for a crossover to a larger value of b at low T
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