The High Cost of Science Disengagement of Canadian Youth: Reimagining Physics Teacher Education for 21st Century

Dr. Marina Milner-Bolotin

Department of Curriculum and Pedagogy
University of British Columbia

Canadian Association of Physicists Sudbury, Ontario
June 15-21, 2014
The Teaching and Learning Enhancement Fund: supporting and encouraging innovation in teaching and the learning environment

Generously supported by UBC TLEF 2012-2015: $151,000
• **Position:** Assistant Professor in Science Education, Faculty of Education, @ UBC

• **Field:** Math & Physics educator: K-college since 1991: Ukraine, Israel, USA, Canada (Vancouver & Toronto)

• **Passion:** Math & Science Teacher Education

• **Teaching Awards:** NSTA, UBC, Ryerson, CAP

• **Co-Author** of an undergrad. physics textbook

• **e-mail:** marina.milner-bolotin@ubc.ca

• **Web site:** http://blogs.ubc.ca/mmilner/
1. Introduction: Why should we care?

2. How do we engage our students?
 a. The value of meaningful STEM engagement
 b. What happens if we fail to engage them meaningfully
 c. Why teacher education matters

3. Reimagining physics teacher education

4. Summary: What is next
1. Why Should We Care?

Numbers Speak

1. Less than 50% of secondary graduates, complete grade 11 and 12 level math & science

2. Science disengagement costs money to students, parents, and Canada

20,000
The number of Ontario students who return each year for a fifth year of secondary school, after meeting graduation requirements

4.
$2,790
The average cost of one semester of undergraduate university tuition or two semesters of college courses⁵.

$6,111 to $10,800 per student
The institutional cost for each first-year Canadian college or university student who fails to progress to the second year⁶.

$12,557
The average annual expenditure per student in publically funded schools (from Kindergarten to Grade 12) in Canada from 2011 to 2012 (ranging from $11,360 in PEI to $22,202 in the Northwest Territories)⁷.
1. More job opportunities with STEM: 70% of the top jobs require STEM, including skilled trades.
2. Their earning power is higher by about 26% regardless of whether they work in STEM or not.
3. STEM is a key to modern innovation.
4. Women are still underemployed in STEM fields.
5. Many skilled trades in Canada require K-12 STEM.
SKILLED WORKERS by 2020

One million
The number of skilled workers needed in Canada by 2020.
Conference Board of Canada

In 2014, Canada – 35 million people, ~18,000,000 workforce
B.C. to make job skills main focus of education system

JUSTINE HUNTER AND JAMES BRADSHAW
VICTORIA AND TORONTO — The Globe and Mail
Published Tuesday, Apr. 29 2014, 4:06 PM EDT
Last updated Wednesday, Apr. 30 2014, 10:40 AM EDT

British Columbia is shifting hundreds of millions in education dollars to force colleges and universities to produce skilled tradespeople for an expected construction boom over the next decade.

The driving force behind the changes is the province’s quest for a new liquefied natural gas industry.

Industry wants the province to address the threat of a skilled labour shortage before companies make final investment decisions. The province estimates it will land $175-billion in new investment over the next decade if it can secure five LNG plants.
Table 6: CONFERENCE BOARD OF CANADA REPORT CARD: EDUCATION AND SKILLS IN CANADA 2013

<table>
<thead>
<tr>
<th>Category</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>A</td>
</tr>
<tr>
<td>Secondary school completion</td>
<td>A</td>
</tr>
<tr>
<td>College completion</td>
<td>A</td>
</tr>
<tr>
<td>University completion</td>
<td>B</td>
</tr>
<tr>
<td>PhD graduates</td>
<td>D</td>
</tr>
<tr>
<td>Science, math, computer science and engineering graduates</td>
<td>C</td>
</tr>
</tbody>
</table>
Gender Gaps in STEM Education & Employment

The Percentage of Female Registered Apprentices in "STEM-Heavy" Trades

<table>
<thead>
<tr>
<th>TRADE</th>
<th>1995</th>
<th>2000</th>
<th>2005</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronics</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Heavy-duty equipment mechanic</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Machinists</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Millwrights</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Plumbers, pipefitters</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Welders</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
Gender Gaps in STEM Education & Employment

Table 4:
A Comparison of Average Earnings of Male and Female Degree Holders in Various Programs of Study

<table>
<thead>
<tr>
<th>Area of Study</th>
<th>Male Graduate Earnings</th>
<th>Female Graduate Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics</td>
<td>$40,216</td>
<td>$31,545</td>
</tr>
<tr>
<td>Civil engineering</td>
<td>$60,000</td>
<td>$49,242</td>
</tr>
<tr>
<td>Nursing</td>
<td>$53,764</td>
<td>$47,985</td>
</tr>
<tr>
<td>Business administration</td>
<td>$48,405</td>
<td>$39,295</td>
</tr>
</tbody>
</table>
1. Introduction: Why should we care?

2. Introduction: How do we engage our students?
 a. The value of **meaningful STEM engagement**
 b. What happens if we **fail to engage** them meaningfully
 c. Why **teacher education matters**

3. Reimagining physics teacher education

4. Summary: What is next
Intro: Why are our students disengaged from STEM?

http://www.oecd.org/
Amanda Ripley: The Smartest Kids in the World...
Some Ideas from the Book

1. Rigour for students and for teachers: doing work worth doing
2. Getting used to productive failure
3. Giving meaningful praise that is earned
4. Teachers’ quality is vital into prestige
5. Teachers’ life long learning and support
Data visualisation for key OECD data

This data tool provides easy access and country comparisons for some key OECD indicators. Please consult our Statistics A to Z page for a full list of OECD statistics and indicators.

Compare your country

Compare > OECD

Select your topic and compare select country on key indicators with OECD and G20 countries.
PISA 2012 Results

<table>
<thead>
<tr>
<th>Country</th>
<th>Maths</th>
<th>Reading</th>
<th>Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shanghai-China</td>
<td>613</td>
<td>570</td>
<td>580</td>
</tr>
<tr>
<td>Singapore</td>
<td>573</td>
<td>545</td>
<td>555</td>
</tr>
<tr>
<td>Hong Kong-China</td>
<td>561</td>
<td>542</td>
<td>551</td>
</tr>
<tr>
<td>Taiwan</td>
<td>560</td>
<td>538</td>
<td>547</td>
</tr>
<tr>
<td>Korea</td>
<td>554</td>
<td>536</td>
<td>545</td>
</tr>
<tr>
<td>Macau-China</td>
<td>538</td>
<td>524</td>
<td>541</td>
</tr>
<tr>
<td>Japan</td>
<td>536</td>
<td>523</td>
<td>538</td>
</tr>
<tr>
<td>Liechtenstein</td>
<td>535</td>
<td>523</td>
<td>528</td>
</tr>
<tr>
<td>Switzerland</td>
<td>531</td>
<td>523</td>
<td>526</td>
</tr>
<tr>
<td>Netherlands</td>
<td>523</td>
<td>518</td>
<td>525</td>
</tr>
<tr>
<td>Estonia</td>
<td>521</td>
<td>516</td>
<td>525</td>
</tr>
<tr>
<td>Finland</td>
<td>519</td>
<td>516</td>
<td>524</td>
</tr>
<tr>
<td>Canada</td>
<td>518</td>
<td>512</td>
<td>523</td>
</tr>
</tbody>
</table>

[OECD, PISA 2012 Results]
Example of a PISA Question

TRAFFIC

Here is a map of a system of roads that links the suburbs within a city. The map shows the travel time in minutes at 7:00 am on each section of road. You can add a road to your route by clicking on it. Clicking on a road highlights the road and adds the time to the Total Time box.

You can remove a road from your route by clicking on it again. You can use the RESET button to remove all roads from your route.

Question: TRAFFIC

Maria wants to travel from Diamond to Einstein. The quickest route takes 31 minutes. Highlight this route.
Example of a PISA Question

TICKETS

A train station has an automated ticketing machine. You use the touch screen on the right to buy a ticket. You must make three choices.

- Choose the train network you want (subway or country).
- Choose the type of fare (full or concession).
- Choose a daily ticket or a ticket for a specified number of trips. Daily tickets give you unlimited travel on the day of purchase. If you buy a ticket with a specified number of trips, you can use the trips on different days.

The BUY button appears when you have made these three choices. There is a CANCEL button that can be used at any time BEFORE you press the BUY button.
Central thesis: a dichotomy between two modes of thought:

"System 1" is fast, instinctive and emotional; "System 2" is slower, more deliberative, and more logical.

It delineates cognitive biases associated with each type of thinking by highlighting several decades of academic research to suggest that people place too much confidence in human judgment.
If we want to change how our students learn science we have to change how we prepare teachers, who goes into K-12 teaching, and how teachers’ professional development is organized.
1. Introduction: Why should we care?
2. Introduction: How do we engage our students?
 a. The value of meaningful STEM engagement
 b. What happens if we fail to engage them meaningfully
 c. Why teacher education matters
3. Reimagining Physics Teacher Education
4. Summary: What is next
Modeling Active Engagement Pedagogy through Classroom Response Systems in a Physics Teacher Education Course

Marina Milner-Bolotin
Department of Curriculum and Pedagogy, Faculty of Education, The University of British Columbia • marina.milner-bolotin@ubc.ca

Heather Fisher
Department of Curriculum and Pedagogy, Faculty of Education, The University of British Columbia

Alexandra MacDonald
Department of Curriculum and Pedagogy, Faculty of Education, The University of British Columbia

Abstract One of the most commonly explored technologies in Science, Technology, and Mathematics (STEM) education is Classroom Response Systems (CRS). Teachers and instructors generate in-class discussion by soliciting student responses.
Teacher Education Should Model Good Teaching Practices

1. Rigour for students and for **teachers**: doing work worth doing
2. Getting **used to productive failure**
3. Giving meaningful praise that is earned
4. Teachers’ quality is vital – it takes time to prepare good STEM teachers
5. Teacher-candidates **should be mentored** - life long learning and support
Physics in Canada Paper submission for a special PER issue

By Marina Milner-Bolotin

Department of Curriculum and Pedagogy, Faculty of Education, UBC

e-mail: marina.milner-bolotin@ubc.ca

Title: Promoting Research-Based Physics Teacher Education in Canada: Building Bridges between Theory and Practice

Key words: physics teacher education, physics education research, educational technologies, conceptual understanding, Technological Pedagogical Content Knowledge.

Abstract

For more than thirty years, extensive evidence has been gathered on undergraduate physics undergraduates. Some study the nature of physics, the role of the teacher, the nature of teaching and learning in physics, and the relationship between research and practice.
Teacher Education Resources should be Based on Research
Blocks and a Pulley

\[m_1 \text{ and } m_2 \]
Two blocks are connected via a pulley. The blocks are initially at rest as block m_1 is attached to a wall. If string A breaks, what will the accelerations of the blocks be? (*Assume* friction is very small and strings don’t stretch)

A. $a_1 = 0; \ a_2 = 0$
B. $a_1 = g; \ a_2 = g$
C. $a_1 = 0; \ a_2 = g$
D. $a_1 = g; \ a_2 = 0$
E. None of the above

Why are the assumptions above important?
Answer: E

Justification: None of the above answers is correct. Consider two blocks as one system: one can see that the system has a mass of \((m_1+m_2)\), while the net force pulling the system down is \(m_1g\). Therefore, applying Newton’s second law, one can see that the acceleration of the system must be less than \(g\):

\[
a = \frac{m_2g}{(m_1 + m_2)} = \frac{m_2}{(m_1 + m_2)} g < g
\]

Some people think that the acceleration will be \(g\). They forget that the system consists of two blocks (not just \(m_1\)) and the only pulling force is \(m_1g\). Thus the system is NOT in a free fall. Compare this questions to the previous one to see the difference.
FORCES

Blocks and a Pulley

Exploration of free body diagrams, two body acceleration, and Newton’s law through the system of two blocks attached through a pulley and one of them resting on a table.

acceleration, forces, friction, Newton’s laws, pulleys, string tension

rating ★★★★★ (No Ratings Yet)

Blocks on a Pyramid

Exploration of free body diagrams, two body acceleration, and newton’s laws through the system of two blocks resting on a pyramid and attached by a pulley.

acceleration, forces, friction, gravitational acceleration, net force, normal force, weight

rating ★★★★★ (No Ratings Yet)
Navigating the Resource

rating ★★★★★ (No Ratings Yet)

An introduction to acceleration and newton’s laws using a demonstration of a commuting car.
acceleration, displacement, distance, forces, net force, velocity

rating ★★★★★ (No Ratings Yet)

How does a reading on a scale change when on a moving elevator? Scenarios with an elevator moving at different velocities and acceleration will be considered. The concepts learned will then be used to analyze data from a real-life experiment.
acceleration, gravitational acceleration, mass, net force, normal force, real-life data, velocity, weight

rating ★★★★★ (No Ratings Yet)

The following set of questions apply Newton’s Second Law to scenarios with multiple blocks held together by the tension force from strings.

http://sciencesres-edcp-educ.sites.olt.ubc.ca/
Are Good Recourses Enough?

1. Teachers need to want to use these resources and to be supported by Science Educators.
2. Resources are only as good as the teachers can make pedagogically effective use of them
1. Introduction: Why should we care?
2. How do we engage our students?
 a. The value of meaningful STEM engagement
 b. What happens if we fail to engage them meaningfully
 c. Why teacher education matters
3. Reimagining physics teacher education
4. Summary: What is next
I hope that Canadian Educational System will undergo a major transformation in this century (like Finland did):

a) Teaching should become a profession, not a job
b) Teachers should be paid adequately and supported
c) Teacher Education Programs should accept highly-qualified candidates (the best ones)
d) Teachers should be held accountable for the quality of their work
e) Teaching should become one of the most desirable, respected and valued professions in Canada.
Early childhood and schools

Attracting, Developing and Retaining Effective Teachers - Final Report: Teachers Matter

Teachers Matter provides a comprehensive, international analysis of trends and developments in the teacher workforce in 25 countries around the world; research on attracting, developing and retaining effective teachers; innovative and successful policies and practices that countries have implemented; and teacher policy options for countries to consider. While documenting many areas of concern about teachers and teaching, the report also provides positive examples of where policies are making a difference. It spotlights countries where teachers’ social standing is high, and where there are more qualified applicants than vacant posts. Even in countries where shortages have been a problem, the report shows that teacher recruitment can be strengthened.

Extended overview | Table of contents
How to obtain this publication | Press release
Multilingual summaries | Pointers for policy development | Website
The Canadian Association of Physicists (CAP) is pleased to announce that the 2014 CAP Award for Excellence in Teaching High School/CEGEP Physics (British Columbia and Yukon) is awarded to Ms. Susan Hunter-Jivung, Lord Tweedsmuir Secondary School, for her expertise in encouraging students to attain the highest standards in physics, which have resulted in her students receiving a broad range of local and national awards in physics.

Susan Hunter-Jivung has devoted much of her time to recruiting, mentoring and inspiring teens to embrace physics challenges at the university level. She runs physics and science challenge clubs which undertake many competitions and supports students in the pursuit of excellence. This has resulted in much success and seven consecutive years of regional and national science fair winners. In 2012, Susan was recognized by the South Fraser Science Fair with the award for the outstanding teacher mentor.

As an innovative teacher, Susan served on the advisory committee for technology in the science 9 curriculum. This lead to the adoption of Vernier materials and a number of web based activities. Through mentoring a SFU program she taught new applications guiding teachers into renewed practice. Susan is a regular presenter at teaching conferences. Her topics include energy conservation, new technologies and equity awareness. Over the past three years she has been working with her physics students on pilot projects for BC Hydro, Translink, and Pulse Energy on energy issues. She has incorporated PHET, video making and Facebook into her physics classroom.

Susan became involved with being a teacher sponsor for the introduction of the International Physics Masterclass to BC universities. She held after school tutorials for participants, to prepare for the workshops on Particle Physics. Her involvement has been described by Marcello Pavan of TRIUMF at UBC as: “absolutely invaluable, helping us develop the program during the first few nascent attempts at the Masterclasses - it is clear that not only does she care deeply about her students and their learning, she is a dedicated educator with very high standards.”