# ORDERED SUPRAMOLECULAR POLYTHIOPHENE STRUCTURES ON PASSIVATED SILICON SURFACES

**Renjie Liu<sup>1</sup>**, Chaoying Fu<sup>2</sup>, D. F. Perepichka<sup>2</sup>, & M.C. Gallagher<sup>1</sup>

- 1. Department of Physics, Lakehead University
- 2. Department of Chemistry, McGill University





# Background

- The functionalization of semiconductor surfaces with organic molecules is a necessary step in the development of hybrid organic-semiconductor structures.
- A significant challenge to organic layer formation is the fact that semiconducting surfaces exhibit a large number of dangling bonds which suppress the diffusivity of adsorbed molecules and can even break the molecules apart via the formation of Si-C bonds.
- ➤ Recently it has been shown that these problems can be overcome by depositing the molecules onto a passivated surface.\*

<sup>\*</sup>Suzuki et al. Phys. Chem. Chem. Phys., 2009, 11, 6498-6504

#### Silicon Substrate

Si(111) has a complex stable  $7 \times 7$  reconstruction, which reduces the number of dangling bonds from 49 to 19 for each  $7 \times 7$  unit cell.

Still not good enough!
Can't provide a surface
with enough mobility for
molecule diffusion.



# $\sqrt{3}$ surface

Compared to the highly reactive Si(111) (7 × 7) surface, a monolayer Ag layer passivates the surface which allows the supramolecular ordering of TPA on Si(111).\*





STM image of the  $\sqrt{3}$ -Ag surface.  $100\text{\AA} \times 100\text{\AA}$ 

Atomic structure of  $\sqrt{3}$  Ag reconstruction. Reproduced from X. Tonga et al.; Applied Surf. Sci. 190,121 (2002).

\*Suzuki et al. Phys. Chem. Chem. Phys., 2009, 11, 6498–6504



Tetrabromotetrathienoanthracene (TBTTA)

Red: Bromine

Blue: Carbon

Yellow: Sulfur

White: hydrogen

# **Thiophene Deposition**

- Thiophene based molecules are of considerable interest in organic semiconductor research due to their efficient conjugation and the chemical stability.
- Thiophene thin films exhibit reasonably high mobilities  $(\mu_h \sim 2 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1})^*$
- ➤ In addition to non-conjugated layers, thiophene based molecules have been used as precursors in surface-confined polymerization experiments.

<sup>\*</sup>Takimiya et al., J.AM.CHEM.SOC.128, 2006 12605

# Experiment

- All measurements are performed in UHV system with a base pressure  $\sim 2 \times 10^{-10}$  Torr.
- ➤ Si(111) wafers use a annealing sequence to attain 7×7 reconstruction.
- ➤ The √3 surface is formed by deposition of one monolayer of silver onto the clean Si surface at 580 °C. Layer formation confirmed with low energy electron diffraction (LEED).
- ➤ TBTTA molecules deposited and Auger electron spectroscopy (AES) was used to verify the coverage.

# Supermolecular structures at RT



- ➤ Three supramolecular domains consistent with the 3-fold symmetry of √3 lattice
- "Raster noise" in many images suggest additional molecules moving on the surface
- Structures only stable under certain bias conditions

#### **Unit Cell**



#### **Intermolecular Interactions**

- TBTTA on Highly oriented pyrolytic graphite (HOPG) exhibits very similar unit cell\*
- ➤ On HOPG, DFT calculations indicate ordering determined entirely by Van der Waals interactions between molecules.



# Type II structures at RT



- ➤ Do observe second (type II) structures at RT
- The periodicity is  $(9\pm0.5)\text{Å}$
- More stable under range of bias conditions

### Effect of annealing

- ➤ Silver layer limits temperature to 400°C
- ➤ Above 160°C molecular layer decomposes



# Summary:

- ➤ The √3 surface does provide a high mobility template for TBTTA adsorption.
- ➤ Molecules form 2-d structures on √3 surface at RT.

  Structures are quite fragile and can decompose readily under STM imaging.
- ➤ Size and symmetry of unit cell suggests Van der Waals interaction the driving force.
- > Defects in V3 structure can limit the size of domains.
- ➤ Another (type II) structure observed at room temperature.
- ➤ Do see changes after annealing.

# THANK YOU FOR YOUR ATTENTION!

Financial supported by









Molecular structure of terephthalic acid (TPA).

#### Possible covalent structure

A recent research indicated that a Ullman dehalogenation reaction followed with C-C coupling can be performed on Ag(111) surface after the absorption of TBTTA when thermal energy was applied.\*









