

Jean-François Arguin (Université de Montréal)
On behalf of the ATLAS Collaboration
CAP Congress, June 17 2014

Why SUSY

- Supersymmetry: often considered the favorite SM extension
 - Provides good dark matter candidate
 - Coupling constant unification
 - Solution to fine-tuning problem of the Higgs → need SUSY at O(TeV) scale
- SUSY pheno considerations
 - SUSY must be broken!
 - R-parity generally assumed to be conserved
 - Stable lightest SUSY particle (LSP) → E_T^{miss}
 - SUSY particles are pair-produced

General LHC SUSY Pheno

- Strongly produced squarks and gluinos dominate
 - But weakly-produced SUSY also very important (see later)
- R-parity conservation implies (long) decay chains containing high-p_T:
 - Jets (sometimes b-jets)
 - Missing E_T (due to LSP)
 - Possibly leptons

Courtesy of Anna Sfyria

SUSY searches use the full ATLAS detector

- Require well-understood detector:
 - Energy scale and resolution, trigger and reconstruction efficiencies for...
 - Electron, muon, tau, photon, jet, b-jet, missing E_T, ...
 - Over a very large energy spectrum (highest to lowest p_T
 → compressed spectra)
- SUSY search sensitivity can be limited by systematic uncertainties!

SUSY will generally be harder than SM in relevant kinematic variables • m_{eff}, E_T^{miss}, transverse mass, etc

Effective mass:

$$m_{
m eff} = E_{
m T}^{
m miss} + \sum p_{
m T}^{\ell} + \sum p_{
m T}^{
m jet}$$

Transverse mass:

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}E_{\mathrm{T}}^{\mathrm{miss}}(1-\cos\Delta\phi(\ell,E_{\mathrm{T}}^{\mathrm{miss}}))}$$

SUSY will generally be harder than SM in relevant kinematic variables
• m_{eff}, E_T^{miss}, transverse mass, etc

Signal regions: optimize several signal regions to cover as much SUSY phase space as possible

SUSY will generally be harder than SM in relevant kinematic variables • m_{eff}, E_T^{miss}, transverse mass, etc

Signal regions: optimize several signal regions to cover as much SUSY phase space as possible

Control regions: design background-rich regions, as close as possible to the SR, where the dominant background can be normalized

SUSY will generally be harder than SM in relevant kinematic variables
• m_{eff}, E_T^{miss}, transverse mass, etc

Signal regions (SR): optimize several signal regions to cover as much SUSY phase space as possible

Control regions (CR): design background-rich regions, as close as possible to the SR, where the dominant background can be normalized (next slide)

Validation regions (VR): regions closer to SR, but still background-enriched, to cross-check the background estimates

Background estimates

- Control regions are defined for the dominant backgrounds
 - Typically: ttbar, W/Z+jets, diboson
 - Background normalization in the SR adjusted to the one of the CR
- Smaller backgrounds normalized using theory predictions
 - ttbar + W/Z/H, triboson, etc
- QCD multijets and fake lepton background estimate with data-driven techniques

Example: 0-lepton stop search (ttbar + E_T^{miss} signature)

ttbar CR: ≥ 1 b-jet

W+jets CR: 0 b-jet

Approach 1: look for the most "obvious" signals

All results presented are with the full 2012 dataset $(\sqrt{s} = 8 \text{ TeV}, \int L \, dt = 20 \, \text{fb}^{-1})$

Search with jets + E_Tmiss search (no leptons)

arXiV:1406.1122

- Target signal: $(\tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{q}\tilde{g})$
- with decays:

$$ilde{q} o q ilde{\chi}_1^0$$

$$ilde{g}
ightarrow q ar{q} ilde{\chi}_1^0$$

• or

$$ilde{q}
ightarrow q ilde{\chi}^{\pm}$$

$$\left| ilde{g}
ightarrow q ar{q} ilde{\chi}^{\pm}
ight.$$

And subsequently:

$$W^{\pm} ilde{ ilde{\chi}}_1^0$$

 Define 15 signal regions with varying jet multiplicity (2-6 jets) and meff cuts

Requirement	Signal Region									
Requirement	2jl	2jm	2jt	2jV	7	3 j		4jW		
$E_{\mathrm{T}}^{\mathrm{miss}}[\mathrm{GeV}] >$	160									
$p_{\mathrm{T}}(j_1) \; [\mathrm{GeV}] >$	130									
$p_{\mathrm{T}}(j_2) \; [\mathrm{GeV}] >$	60									
$p_{\mathrm{T}}(j_3) \; [\mathrm{GeV}] >$			_		60		40			
$p_{\mathrm{T}}(j_4) \; [\mathrm{GeV}] >$	- 40									
$\Delta \phi(\mathrm{jet}_{1,2,(3)},\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.4									
$\Delta \phi(\mathrm{jet}_{i>3},\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	- 0.2									
W candidates	_			2(W o j)		-	(W o j) + (W o jj)			
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}~[{ m GeV^{1/2}}] >$	8 15							_		
$E_{ m T}^{ m miss}/m_{ m eff}(N_{ m j}) >$	_			0.25	0.25		0.35			
$m_{ m eff}({ m incl.})~{ m [GeV]}>$	800	1200	1600	500 1800 22		2200	1100			
Requirement	Signal Region									
	4jl-	4jl	4jm	4jt	5 j	6jl	6jm	6jt	6jt+	
$E_{ m T}^{ m miss}[{ m GeV}] >$	160									
$p_{\mathrm{T}}(j_1) \; [\mathrm{GeV}] >$	130									
$p_{\mathrm{T}}(j_2) \; [\mathrm{GeV}] >$	60									
$p_{ m T}(j_3) \ [{ m GeV}] >$	60									
$p_{ m T}(j_4) \; [{ m GeV}] >$	60									
$p_{ m T}(j_5) \ [{ m GeV}] >$	- 60						60			
$p_{ m T}(j_6)~{ m [GeV]}>$	- 60									
$\Delta \phi(\mathrm{jet}_{1,2,(3)},\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.4									
$\Delta \phi({ m jet}_{i>3},{ m E}_{ m T}^{ m miss})_{ m min}>$	0.2									
$E_{ m T}^{ m miss}/\sqrt{H_{ m T}}~[{ m GeV^{1/2}}] >$	10 –									
$E_{ m T}^{ m miss}/m_{ m eff}(N_{ m j}) >$	- 0.4			0.25		0.2		0.25	0.15	
$m_{ m eff}({ m incl.})~{ m [GeV]}>$	700	1000	1300	2200	1200	900	1200	1500	1700	

Search with jets + E_Tmiss search (no leptons)

arXiV:1406.1122

Z(→vv)+jets background dominates at low jetmultiplicity. Estimate in a γ+jets CR with photon p_T emulation E_T^{miss}

Search with jets + E_Tmiss search (no leptons)

arXiV:1406.1122

Z(→vv)+jets background dominates at low jetmultiplicity. Estimated in a γ+jets CR with photon p_T emulation E_T^{miss}

ttbar background dominates at high jet-multiplicity. Estimated in a CR with a b-tag and low transverse mass of lepton and E_T^{miss}

Search with jets + E_T^{miss} search (no leptons)

arXiV:1406.1122

Simplified models: $\tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$ m(gluino) > 1330 GeV for massless LSP (95% CL)

Realistic (CMSSM) model: m(gluino)=m(squark) > 1700 GeV (95% CL)

Search with multijets + E_Tmiss search

arXiV:1308.1841

- Extend multijets search for multiplicities ≥7, ≥8, ≥9, ≥10 jets!
- Sensitive to final states
 with several W/Z→jj in the
 event
- Dominated by multijets background
- Also include SR with bjets (see later)

Search with multijets + same-sign (SS) lepton pairs and 3 leptons

 Same motivation as multijets analysis, but for W→Iv and Z→II

- Pros: smaller background, looser cuts on e.g. E_T^{miss}
- Cons: smaller branching fractions
- Dominant backgrounds: WZ+jets, ttbarW/Z, fake leptons, charge-flip
- Also include SR with b-jets (see later)

Complementarity of SUSY searches: SS/3L analysis better coverage when mass spectrum more compressed

Approach 2: look for natural SUSY

Natural SUSY

- #1 motivation for SUSY
 being discoverable at LHC:
 cancel divergent
 corrections to Higgs mass
- Only a few superpartners need to be light to achieve this
 - higgsinos
 - stop and sbottom
 - gluinos
- Natural SUSY can yield different signatures than "generic" SUSY → dedicated searches

Gluino-mediated stop quarks

3 b-jets search: ATLAS-CONF-2013-061

- $ilde{g}
 ightarrow t ilde{t}_1^{(*)}$ with $ilde{t}_1
 ightarrow t ilde{\chi}_1^0$
- SR with b-jets of multijets and SS/3L analyses set complementary constraints
- Most powerful analysis: 3 bjets analysis (0 lepton)
 - with ≥7 jets, large E_T^{miss} and m_{eff}
 - Background dominated by ttbar+X
- Other decays are considered in ATLAS:

$$\tilde{t}_1
ightarrow b ilde{\chi}_1^{\pm} \hspace{0.1cm} ilde{t}_1
ightarrow c ilde{\chi}_1^{0} \hspace{0.1cm} ilde{t}_1
ightarrow b s$$

Direct stop searches

0-lepton stop: arXiV: 1406.1122

 Most stop decays yield a W boson, a b-jet and LSP ⇒

ttbar + E_T^{miss} signature

- Searches performed with 0, 1 and 2 leptons
- 0-lepton analysis
 - 4-6 jet multiplicities with topspecific cuts (e.g. 3-jet mass)
 - Boosted top and W employed for large stop mass
 - Dominant background: semileptonic ttbar with τ decay

Large-radius jet mass (ttbar CR)

E_Tmiss in a 6-jet SR

Summary of stop constraints

Lots of possibilities! Limits are weaker if branching fractions to a given decay ≠ 100%

Direct sbottom

arXiV:<u>1310.3675</u>

- Search for $ilde{b}_1 o b ilde{\chi}_1^0$
- Selections
 - 2 high-p_T b-jets and large E_T^{miss}
 - Plus other topological cuts to remove
- Dominant backgrounds
 - ttbar and Z+bbbar
- Can also search for $ilde t_1 o b ilde \chi_1^\pm$ with small $\Delta m \equiv m_{ ilde \chi_1^\pm} m_{ ilde \chi_1^0}$
 - Natural if both gauginos are higgsino-like

Electroweak SUSY

Direct gauginos production: small cross-section but generally expected to be light → maybe the only Superpartners produceable at the LHC??

⇒ See dedicated talks by Zoltan Gecse and Matthew Gignac

"Exotic" SUSY: long-lived R-hadrons

arXiV:1310.6584

- Long-lived gluinos or squarks (e.g. split SUSY, RPV) can form R-hadrons Ex.: $\tilde{g}q\bar{q}$
 - A fraction would stop in detector
 - And decay to LSP and jets at later time
- Search performed in empty LHC bunch crossings for:
 - ≥ 1 good quality jet, large E_T^{miss}, no muon activity
- Backgrounds:
 - Beam-halo muons, cosmic muons

"Exotic SUSY": Disappearing tracks

arXiV:1310.3675

• Some SUSY models predict degenerate $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^0$, resulting in long-lived charginos \Rightarrow disappearing tracks

Selections:

- 1 ISR jet and large E_T^{miss}
- 1 isolated track with few numbers of TRT hits
- Backgrounds:
 - Charged-hadrons interactions, p_T mismeasured tracks

I could only cover a small fraction of existing analyses!

No stones left unturned!

Summary

- Large collaborative efforts to find SUSY at the LHC
- Many different forms of SUSY are explored
- Excellent prospects for Run II!

