

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

The Advanced Rare Isotope Laboratory ARIEL June 18, 2014

Isotopes for Science and Medicine

Reiner Kruecken | Science Division Head | TRIUMF Professor of Physics | University of British Columbia

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

TRIUMF accelerator complex

ISAC isotopes

RIUMF

Isotopes for Science and Medicine

Isotopes for developing a standard model for nuclear physics:

- probing ab-initio theory in light and medium-mass nuclei
- understanding the role of 3N forces in the shell evolution of nuclei

Isotopes as laboratories search for new forces in nature:

- Setting world-leading limits on physics beyond the standard model
- Developing leading EDM experiments for the atom (RnEDM) and electron (FrEDM)

Isotopes to determine the origin of the heavy elements in the universe:

- Understanding the nucleosynthesis in nova and x-ray bursters
- Delineating the r-process path and identifying its astrophysical origin

Isotopes as probes of magnetism at interfaces and surfaces:

- Expanded user program in depth controlled β-NMR
- Understand magnetic and electronic properties of surfaces and interfaces
- Develop better battery materials

Isotopes for molecular imaging of diseases and treatment of cancer:

- Produce research quantities of alpha emitting isotopes for targeted alpha tumor therapy
- Develop new designer isotopes for diagnostics and treatment

Nuclear Structure

Fundam. Symmetries

Materials Science

Nuclear Astrophysics

Nuclear Medicine

RIUMF

ISAC Experimental facilities and programs

ARIEL will be TRIUMF's flagship Rare Isotope Beam facility for the production of isotopes for science and medicine. ARIEL uses protoninduced spallation and electron-driven photofission of ISOL targets for the production of short-lived, rare isotopes that are delivered to multiple experiments simultaneously at the ISAC facility.

Completing & operating ARIEL absolutely central to realizing laboratory vision:

Global leadership for Canada in Isotopes for Science & Medicine

Substantially expands capabilities:

- Three simultaneous beams
- More and new isotopes
- Enables new experiments
- Expands national & international users
- International partnership w/ India
- World-leading capabilities
- Serves Canada and society

Implementation:

- Two new drivers: electron & proton
- Two new target stations and front end
- Interleave science with construction

ARIEL: Synergies & Connections

ARIEL Buildings Occupancy

- Culmination of 3 years work
- Meets needs of entire ARIEL scope

*Association of Consulting Engineering Companies of BC.

June 18, 2014

e-linac: MW-class Superconducting Electron Accelerator

300 kV electron gun

- 10 mA thermionic gridded gun, emittance 5 μ m rms
- RF modulated grid at 650 MHz
- Use of dielectric waveguide to transmit modulation
- from ground potential to gun
- Gun commissioning June 2013

"Made in Canada" Superconducting RF Cavities

Multi-cell SRF cavity fabrication by PAVAC, Inc.

Status:

- Three cavities delivered
- One more in fabrication

Injector CM Final Assembly & Cold 2K Test

2014/04/07 Cold mass in cryostat

Cold test start 2014/04/17

2014/04/25 2K cold test complete.

e-linac progress

- E-gun and injector cryomodule installed in e-hall
- Commissioning started (CNSC license for 3kW, 10mA egun, 4K cooldown of ICM)
- On track for fall delivery of 25MeV, 100kW beam

ARIEL e-Linac: Installation & Commissioning Status

- Electron source operated at 300 kV, up to 10 mA peak current @ 1% duty factor
- Klystron integrated RF system test has been completed at 1kW level
- RF delivered to cavity on resonance at 4K
 - Cavity RF field sustained in self-excited loop in accelerating mode
- Next steps: lock the field in amplitude and phase, at 4 or 2K – increase gradient to 10MV/m

Completing & operating ARIEL absolutely central to realizing laboratory vision:

Global leadership for Canada in Isotopes for Science & Medicine

Substantially expands capabilities:

- Three simultaneous beams
- More and new isotopes
- Enables new experiments
- Expands national & international users
- International partnership w/ India
- World-leading capabilities
- Serves Canada and society

Implementation:

- Two new drivers: electron & proton
- Two new target stations and front end
- Interleave science with construction

Completing & operating ARIEL absolutely central to realizing laboratory vision:

Global leadership for Canada in Isotopes for Science & Medicine

Substantially expands capabilities:

- Three simultaneous beams
- More and new isotopes
- Enables new experiments
- Expands national & international users
- International partnership w/ India
- World-leading capabilities
- Serves Canada and society

Implementation:

- Two new drivers: electron & proton
- Two new target stations and front end
- Interleave science with construction

Phase 1: Li-8 for β -NMR

Goals:

 Photo-production of Li-8 in a Be-9 target using bremsstrahlung photons produced by stopping 100 kW electron beam in a solid metal target, and delivered to β-NMR.

Requires:

- ARIEL e-linac 30 MeV 100 kW
- Non-actinide target station with solid converter
- Pre-separator & beamline to β -NMR

ARIEL II Phase 1: VECC MoU ADD-3

Phase 1 will be done in collaboration with VECC - Kolkata:

- In August 2013 MoU Add-3 was signed
- Scope includes two ARIEL target modules, tested in ARIEL, and front-end beamlines

RIUMF Phase 2: Photo-fission for r-process studies

Goals:

Production and delivery of neutron-rich fission fragments by implementing actinide targets in conjunction with the solid photo-converter.

Requires: east target station w/ actinides hotcell for work w/ actinides Medium Resolution Separator Hot cells Target station w/ shielding Beamline tunnel RIB extraction

Milestones: First photofission beams from the e-linac to ISAC

Phase 3: Purified accelerated high mass RIBs

Goals:

- Transport ISAC RIBs with A>29 to the ARIEL building for advanced purification & charge breeding and deliver them to the ISAC energy experimental areas.
- A collection station for medical isotopes will be implemented.

CFI-funded CANREB project provides the essential components required for the ARIEL front-end: EBIS, HRS, RFQ cooler.

Requires (within ARIEL II):60 m LEBT beamlines

Phase 4: Actinide Production for Fundamental Symmetry Tests

Goals:

TRIUMF

 Implement new proton beamline (BL4N) from cyclotron, delivering up to 100 µA at 500 MeV of proton beam to the West Target Station.

Requires:

Proton beamline BL4N

RIUMF Phase 5: Full power e-linac to reach most exotic neutron rich nuclei

Goals:

 Increase the energy and power of the e- linac beam to full design specification 50 MeV, 500kW, producing up to 10¹⁴ fissions per second.

Requires:

- additional Accelerator
 Crymodule w/ 2 cavities
- additional klystron

ARIEL-II Science Drivers & Implementation Criteria

Science Drivers

- 1. Increased beam time to β -NMR for full user program
- 2. Pure, heavy mass accelerated RIBs (from ISAC & ARIEL)
- 3. Reaching the r-process using photo-fission (w/ highest beam energy)
- 4. Enable long beam times for Fundamental Symmetries & Nuclear Astrophysics
- 5. Isotopes for Nuclear Medicine R&D

Technical and other Objectives

- Delivery of three simultaneous RIBs to users
- High intensity photo-converter development (to enable 500 kW operation)
- Extend TRIUMF's core competencies in SRF and high power targets

Phased Implementation

 Phased construction enables continuous stream of scientific results from ARIEL.

ARIEL-II: Completion to Science

ARIEL Timeline

Kruecken - ARIEL - CAP 2014

June 18, 2014

EXAMPIENT OF STRIUMF Complete ARIEL and tap its unique capabilities for isotope production.

Unified theory for all nuclei

- halo / dripline nuclei & ab-inito theory
 - → high power proton beam
- shell evolution and 3N forces
 - ➔ high power <u>electron</u> beam

Origin of the heavy elements

- H & He burning
 - ➔ High power proton beam
 - ➔ Beam development time
 - ➔ Long beam times
- r-process in neutron-rich nuclei
 - ➔ High power <u>electron</u> beam

Fundamental Symmetries

- Francium and Radon EDMs and PNC
 - High power proton beam
 - Long beam times
- Need high-power proton and electron production in full multi-user operation w/ 3 production targets

Figure 7: Production yield in target assuming a 10 μ A proton beam onto a 25 g/cm² UC_X target using FLUKA

Figure 8: Production in target assuming 4.6x1013 photo-fission induced into a 15 g/cm² UC_x target.

Kruecken - ARIEL - CAP 2014

anne

Canada's National Laboratory for Particle and Nuclear Physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules

TRIUMF:

Alberta | British Columbia | Calgary | Carleton | Guelph | Manitoba | McMaster | McGill | Montréal | Northern British Columbia | Queen's | Regina | Saint Mary's Simon Fraser | Toronto | Victoria | Winnipeg | York

Thank you! Merci!

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada Propriété d'un consortium d'universités canadiennes, géré en co-entreprise à partir d'une contribution administrée par le Conseil national de recherches Canada

Campaign staged: follows build out of equipment & increase of beam power

- High Power Commissioning, beam power up to 100kW.
- Accelerator Commissioning, beam energy up to 30 MeV
 - Part 4: beam average power progressively increased from 100W up to 30kW
 - Part 3: EACA second SRF cavity installed & commissioned; beam accelerated up to 30MeV at the EHD dump. Beam power limited to 100 W.
 - Part 2: EHAT and EHDT beamlines and EHD dump are added, and commissioned to 1kW beam power.
 - Part 1: EACA cryomodule (with a single SRF cavity), EABT
 and EABD are added; EACA equipment commissioned;
 beam accelerated to 20MeV at EABD dump.
- Injector Commissioning, beam energy up to 10 MeV
 - Part 3: beam average power progressively increased to 1kW at EMBD dump
 - Part 2: EINJ cryomodule, EMBT to EMBD are added; EINJ equipment commissioned; beam power < 100W, 10MeV.
 - Part 1: GUN, ELBT and ELBD commissioned to 300keV

Reaching the r-process path in the laboratory: competitive isotopes

Projection ARIEL: FLUKA, using the converter-target geometry and experimental diffusion times, and extraction and ionization efficiencies from ISOLDE, overlaid with the isotope specific half-live. Uncertainty in projection: factor ~10. (TRIUMF 5YP page 422), SPIRAL: GANIL web site.

