Doppler shift lifetime measurements using the TIGRESS Integrated Plunger device

Aaron Chester on behalf of the TIP and TIGRESS teams

PhD Candidate
Department of Chemistry
Simon Fraser University

CAP Congress 2014
17 June 2014
Nuclear structure studies far from stability

\[N = Z \]

\(^{16}\text{O} \)
\(^{48}\text{Ca} \)
\(^{78}\text{Ni} \)
\(^{100}\text{Sn} \)
\(^{40}\text{Ca} \)
\(^{56}\text{Ni} \)
\(^{208}\text{Pb} \)
\(^{132}\text{Sn} \)
Along the $N = Z$ line, shells open or close simultaneously and in the same way for protons and neutrons.

Closed shells are spherical and inert.

Proton-neutron interactions develop for partially filled proton and neutron shells, driving shape deformation.

This gives rise to the phenomenon of shape evolution along the $N = Z$ line.
Studying nuclear structure using the electromagnetic force

- The electromagnetic force provides a convenient non-intrusive probe of nuclear systems bound by the strong force.
- Lifetime measurements using gamma-ray spectroscopy provide:
 1. An observable sensitive to nuclear structure.
 2. A sensitive benchmark for nuclear model calculations.

\[
\tau(E2; 2_1^+ \to 0_1^+) = \frac{1}{\lambda(E2; 2_1^+ \to 0_1^+)}
\]
\[
\lambda(E2; 2_1^+ \to 0_1^+) \propto E(2_1^+)^5 \times B(E2; 2_1^+ \to 0_1^+)
\]
\[
B(E2; 2_1^+ \to 0_1^+) \propto \langle 2_1^+ | |E2| |0_1^+ \rangle^2
\]
\[
B(E2; 2_1^+ \to 0_1^+) \propto \beta^2
\]
Motivation: Why ^{68}Se?

Model calculations

<table>
<thead>
<tr>
<th>Model</th>
<th>Interaction</th>
<th>Hartree-Bogoliubov</th>
<th>Self-consistent</th>
<th>Excited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell Model</td>
<td>$B(E2, 2^+_1 \rightarrow 0^+_1) \ [e^{2}\text{fm}^4]$</td>
<td>100^1</td>
<td>500^3</td>
<td></td>
</tr>
<tr>
<td>Interacting</td>
<td></td>
<td>280^2</td>
<td>725^4</td>
<td></td>
</tr>
<tr>
<td>Hartree-Bogoliubov</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-consistent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excited</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$B(E2, 2^+_1 \rightarrow 0^+_1) \ [e^{2}\text{fm}^4]$</th>
<th>$\tau \ [\text{ps}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coulex 6</td>
<td>432(58)</td>
</tr>
<tr>
<td>RDM 7</td>
<td>392(70)</td>
</tr>
</tbody>
</table>

Recent measurements

A compound system forms with large angular momentum and recoil speed.

The system decays first by the emission of particles, then by gamma-ray emission.

Exotic recoil products can be studied provided a proper channel selection method is realized.
Doppler shift attenuation method lifetime measurements

- a) Fully shifted \(\tau < t_{stopping} \)
- b) Partially shifted \(\tau \approx t_{stopping} \)
- c) Fully stopped \(\tau > t_{stopping} \)

Penetration into stopper

Particle detector

Germanium detector

Number of counts
TIP DSAM configuration

Camera

Collimator

LED

Rotating Rod

Target Wheel
Objective: Observation of 68Se and possible lifetime measurement via DSAM.

Detectors:
- 24-element CsI(Tl) downstream wall for particle detection.
- 13 TIGRESS HPGe and 3 GRIFFIN HPGe for gamma-ray detection.

An 36Ar beam was reacted on a 40Ca target in a variety of backings and running conditions.

The 76Sr compound nucleus has 2α evaporation channel to 68Se.

Preliminary analysis is geared towards optimizing procedures for observation of 68Se.
68Se DSAM experiment summary

<table>
<thead>
<tr>
<th>Beam energy</th>
<th>Target</th>
<th>Backing</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 MeV</td>
<td>250 µg/cm2 Ca</td>
<td>21.7 mg/cm2 Au</td>
<td>ox</td>
</tr>
<tr>
<td>110 MeV</td>
<td>250 µg/cm2 Ca</td>
<td>21.7 mg/cm2 Au</td>
<td>ox</td>
</tr>
<tr>
<td>110 MeV</td>
<td>250 µg/cm2 Ca</td>
<td>25.6 mg/cm2 Pb</td>
<td>ox</td>
</tr>
<tr>
<td>110 MeV</td>
<td>500 µg/cm2 Ca</td>
<td>28.1 mg/cm2 Pb</td>
<td>v. ox</td>
</tr>
<tr>
<td>110 MeV</td>
<td>134.2 µg/cm2 Ca</td>
<td>24.36 mg/cm2 Au</td>
<td>remade</td>
</tr>
<tr>
<td>105 MeV</td>
<td>134.2 µg/cm2 Ca</td>
<td>24.36 mg/cm2 Au</td>
<td>remade</td>
</tr>
<tr>
<td>115 MeV</td>
<td>250 µg/cm2 Ca</td>
<td>27.6 mg/cm2 Pb</td>
<td>remade</td>
</tr>
<tr>
<td>100 MeV</td>
<td>250 µg/cm2 Ca</td>
<td>27.6 mg/cm2 Pb</td>
<td>remade</td>
</tr>
</tbody>
</table>

- ox: target exhibited signs of oxidation
- v. ox: old target, very oxidized
- remade: remade by Micromatter with calcium “chunks” rather than grains
Gamma-ray spectrum: No particle identification

Strong lines from reactions on 16O!

- 49Cr $^{7/2-} \rightarrow ^{5/2-}$ $^{271.8 \text{ keV}}$
- 46Ti $^{2+} \rightarrow ^{0+}$ $^{889.3 \text{ keV}}$
- 49V $^{11/2-} \rightarrow ^{7/2-}$ $^{1021.6 \text{ keV}}$
- 49V $^{15/2-} \rightarrow ^{11/2-}$ $^{1241.7 \text{ keV}}$
- 46Ti $^{6+} \rightarrow ^{4+}$ $^{1289.1 \text{ keV}}$
- 46Ti $^{10+} \rightarrow ^{8+}$ $^{1345.1 \text{ keV}}$
CsI(Tl) detector waveform fits

Waveform fit function

for $t \leq t_0 : W(t) = C$

for $t \geq t_0 : W(t) = C$

(Csl fast) $\rightarrow + A_F \left[1 - \exp \left(\frac{t - t_0}{\tau_F} \right) \right] \exp \left(\frac{t - t_0}{\tau_{RC}} \right)$

(Csl slow) $\rightarrow + A_S \left[1 - \exp \left(\frac{t - t_0}{\tau_S} \right) \right] \exp \left(\frac{t - t_0}{\tau_{RC}} \right)$

(PIN rise time) $\rightarrow + A_R \left[1 - \exp \left(\frac{t - t_0}{\tau_R} \right) \right] \exp \left(\frac{t - t_0}{\tau_{RC}} \right)$
Particle identification using CsI(Tl) waveform fits

PID value = 100 × (1 + A_S/A_F)
1p1α gated gamma-ray spectrum

- **47V**: 1p1α from $^{36}\text{Ar}+^{16}\text{O}$
- **46Ti**: 2p1α from $^{36}\text{Ar}+^{16}\text{O}$
- **70Se**: 2p1α from $^{36}\text{Ar}+^{40}\text{Ca}$
2p1\(\alpha\) gated gamma-ray spectrum

- * 46Ti: 2p1\(\alpha\) from \(^{36}\text{Ar}+^{16}\text{O}\)
- ‡ 70Se: 2p1\(\alpha\) from \(^{36}\text{Ar}+^{40}\text{Ca}\)

![Graph showing gamma-ray spectrum with energy in keV on the x-axis and counts in 1 keV/ch on the y-axis. Peaks marked with * indicate 46Ti: 2p1\(\alpha\) from \(^{36}\text{Ar}+^{16}\text{O}\), while peaks marked with ‡ indicate 70Se: 2p1\(\alpha\) from \(^{36}\text{Ar}+^{40}\text{Ca}\).]
<table>
<thead>
<tr>
<th>Particle type</th>
<th>eff. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton</td>
<td>18.72(11)</td>
</tr>
<tr>
<td>Alpha</td>
<td>7(3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Particle type</th>
<th>eff. [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton</td>
<td>14.8(4)</td>
</tr>
<tr>
<td>Alpha</td>
<td>5.5(1.5)</td>
</tr>
</tbody>
</table>

For comparison, the efficiency of Microball is $\sim 70\%$ for protons and $\sim 45\%$ for alpha particles under similar conditions.8

DSAM lineshapes in the 2p1α gate

46Ti
$^8 \rightarrow ^6 + 1597.5$ keV
$\tau = 0.71(9)$ ps

Counts [1 keV/ch]

Energy [keV]

ring 1

ring 2

ring 3

ring 4

ring 5

ring 6

A. Chester (SFU)
Add-back procedure

\[E_1 > E_2 \]
Add-back procedure

\[E = E_1 + E_2 \] assigned to white
Add-back factor = 1.37 (37% more counts in add-back) at 889 keV.

Reduced low energy Compton background
Compton suppression via TIGRESS/BGO hit pattern

A. Chester (SFU)

CAP Congress 2014

17 June 2014
Future work: DSAM lineshape analysis code

- Geant4-based analysis code to extract lifetimes from DSAM lineshapes is under development.
- The TIGRESS array and TIP ancillary detectors have been implemented.
- Fusion-evaporation reaction kinematics must be implemented.
- Simulated lineshapes can be fit to experimental spectra and the best fit lifetime can be determined.
Future work: experiments with the TIP plunger

The TIP plunger device for RDM measurements, designed by Robert Henderson at TRIUMF.
Future work: TIP CsI(Tl) ball

The TIP CsI(Tl) ball, an $\sim 4\pi$ particle detector, designed by Robert Henderson at TRIUMF.
Conclusions and Summary

- Currently establishing data analysis procedures prior to attempting 68Se identification.

- BGO suppression schemes are currently under investigation.

- The analysis will be geared towards identifying 68Se and other nuclei where a contribution can be made by:
 1. Measuring lifetimes,
 2. building level schemes,
 3. measuring angular distributions,
 4. and measuring linear polarization.
Acknowledgements

TIP Design
R. Henderson, TRIUMF

Simon Fraser University
C. Andreoiu, R. Ashley, D. Cross, J. Pore, U. Rizwan, K. Starosta, P. Voss, J. Williams

SFU Science Machine & Electronics Shops
R. Holland, P. Kowalski, J. Shoults, K. Van Wieren

TRIUMF

University of Guelph

University of Toronto
T. E. Drake

University of Surrey
L. Evitts, L. Morrison

St. Mary’s University
R. A. E. Austin
Effect of target oxidation

![Graph showing the effect of target oxidation with energy in keV on the x-axis and counts (x10^3) [1 keV/ch] on the y-axis. Two curves represent the oxidized target and the remade target.]

- Oxidized target
- Remade target

A. Chester (SFU)
CAP Congress 2014
17 June 2014
Calculating particle detection efficiency: an example

- In general, if \(n \) particles are emitted, the probability to detect \(i \) is given by Eq. 1
 \[
P(i) = \binom{n}{i} \varepsilon^i (1 - \varepsilon)^{n-i}
 \]
 where \(\varepsilon \) is the particle detection efficiency.

- The probability of detecting the two proton channel in the one proton gate is given by Eq. 2
 \[
P(2p \text{ in } 1p) = \binom{2}{1} \varepsilon_p^1 (1 - \varepsilon_p)^{2-1} = 2\varepsilon_p (1 - \varepsilon_p)
 \]
 where \(\varepsilon_p \) is the proton detection efficiency.

- Similarly, the probability of detecting the two proton channel in the two proton gate is given by Eq. 3
 \[
P(2p \text{ in } 2p) = \varepsilon_p^2
 \]
Calculating particle detection efficiency: an example

- Take the ratio of probabilities and solve for ε_p:

\[
R = \frac{P(2p \text{ in } 2p)}{P(2p \text{ in } 1p)} = \frac{\varepsilon_p^2}{2\varepsilon_p(1 - \varepsilon_p)} = \frac{\varepsilon_p}{2(1 - \varepsilon_p)}
\]

\[
\Rightarrow \varepsilon_p = \frac{2R}{1 + 2R}
\]

- We can calculate the proton detection efficiency for the $^{36}\text{Ar} + ^{40}\text{Ca}$ reaction channel using the 1p1\(\alpha\) and 2p1\(\alpha\) gates.

- The detection probability is reflected in the number of observed gamma-rays from the nucleus of interest; in this case the 944 keV line in ^{70}Se.

- The alpha particle detection efficiency is fixed by examining the same alpha particle gate.

69141(437) counts in the 1p1\(\alpha\) gate and 5996(121) counts in the 2p1\(\alpha\) gate $\Rightarrow \varepsilon_p = 14.8(4)\%$ from Eq. 5.