Doppler shift lifetime measurements using the TIGRESS Integrated Plunger device

Aaron Chester on behalf of the TIP and TIGRESS teams

PhD Candidate Department of Chemistry Simon Fraser University

> CAP Congress 2014 17 June 2014

Nuclear structure studies far from stability

Shape evolution along the $N = Z$ line

- Along the $N = Z$ line, shells open or close simultaneously and in the same way for protons and neutrons.
- Closed shells are spherical and inert.
- Proton-neutron interactions develop for partially filled proton and neutron shells, driving shape deformation.
- This gives rise to the phenomenon of shape evolution along the $N = Z$ line. Shape evolution from $56N$ to $100Sn$.

Studying nuclear structure using the electromagnetic force

- The electromagnetic force provides a convenient non-intrusive probe of nuclear systems bound by the strong force.
- Lifetime measurements using gamma-ray spectroscopy provide:
	- **1** An observable sensitive to nuclear structure.
	- A sensitive benchmark for nuclear model calculations.

Motivation: Why ⁶⁸Se?

¹M. Hasegawa et al. Phys. Lett. B 656 51 (2007).; ²F. II. Khudair, Y. S. Li, G. L. Long, Phys. Rev. C 75 054316 (2007). 3 T. A. War et al. Eur. Phys. J. A 22 13 (2004).; 4 N. Hinohara et al. Prog. Theor. Phys. (Kyoto) 119 59 (2008). $5A.$ Petrovici et al. Nucl. Phys. A 710 246 (2002).

 6 A. Obertelli et al. Phys. Rev. C 80 031304(R) (2009).; ⁷A. J. Nichols et al. Phys. Rev. B 733 52 (2014)

Producing exotic nuclei using fusion-evaporation reactions

- A compound system forms with large angular momentum and recoil speed.
- The system decays first by the emission of particles, then by gamma-ray emission.
- Exotic recoil products can be studied provided a proper channel selection method is realized.

Doppler shift attenuation method lifetime measurements

TIP DSAM configuration

TIP DSAM configuration

TIP DSAM configuration

⁶⁸Se DSAM experiment summary

- Objective: Observation of ⁶⁸Se and possible lifetime measurement via DSAM.
- **Q** Detectors:
	- 24-element CsI(Tl) downstream wall for particle detection.
	- 13 TIGRESS HPGe and 3 GRIFFIN HPGe for gamma-ray detection.
- An 36 Ar beam was reacted on a 40 Ca target in a variety of backings and running conditions.
- The ⁷⁶Sr compound nucleus has 2α evaporation channel to ⁶⁸Se.
- Preliminary analysis is geared towards optimizing procedures for observation of ⁶⁸Se.

⁶⁸Se DSAM experiment summary

- ox: target exhibited signs of oxidation
- v. ox: old target, very oxidized
- **•** remade: remade by Micromatter with calcium "chunks" rather than grains

Gamma-ray spectrum: No particle identification

CsI(Tl) detector waveform fits

Particle identification using CsI(Tl) waveform fits

PID value = $100 \times (1 + A_S/A_F)$

$1p1\alpha$ gated gamma-ray spectrum

$2p1\alpha$ gated gamma-ray spectrum

Particle detection efficiency

For comparison, the efficiency of Microball is ~70% for protons and ~45% for alpha particles under similar conditions.⁸

⁸K. Jonsson et al. Nucl. Phys. A. 645 (1999) 47–60.

DSAM lineshapes in the $2p1\alpha$ gate

Add-back procedure

Add-back procedure

 $E = E_1 + E_2$ assigned to white

Add-back results

Add-back factor $= 1.37$ (37% more counts in add-back) at 889 keV.

Compton suppression with TIGRESS

Compton suppression via TIGRESS/BGO hit pattern

Future work: DSAM lineshape analysis code

- Geant4-based analysis code to extract lifetimes from DSAM lineshapes is under development.
- The TIGRESS array and TIP ancillary detectors have been implemented.
- Fusion-evaporation reaction kinematics must be implemented.
- Simulated lineshapes can be fit to experimental spectra and the best fit lifetime can be determined.

Future work: experiments with the TIP plunger

The TIP plunger device for RDM measurements, designed by Robert Henderson at TRIUMF.

Future work: TIP CsI(Tl) ball

The TIP CsI(TI) ball, an $\sim 4\pi$ particle detector, designed by Robert Henderson at TRIUMF.

Conclusions and Summary

- **Currently establishing data analysis procedures prior to attempting ⁶⁸Se** identification.
- BGO suppression schemes are currently under investigation.
- \bullet The analysis will be geared towards identifying 68 Se and other nuclei where a contribution can be made by:
	- **1** Measuring lifetimes,
	- building level schemes,
	- **3** measuring angular distributions,
	- 4 and measuring linear polarization.

Acknowledgements

TIP Design R. Henderson, TRIUMF

Simon Fraser University C. Andreoiu, R. Ashley, D. Cross, J. Pore, U. Rizwan, K. Starosta, P. Voss, J. Williams

SFU Science Machine & Electronics Shops R. Holland, P. Kowalski, J. Shoults, K. Van Wieren

TRIUMF

G. Ball, T. Ballast, C. Bartlett, P. Bender, N. Bernier, A. Bey, C. Bolton, A. Cheeseman, S. Ciccone, A. B. Garnsworthy, G. Hackman, S. Ketelhut, R. Krücken, D. Miller, W. J. Mills, M. Moukaddam, C. Pearson, T. Proctor, M. Rajabali, E. Tardiff, C. Unsworth, Z.-M. Wang

University of Guelph V. Bildstein, B. Hadina, B. Jigmeddorjj, A. T. Laffoley, K. G. Leach, E. T. Rand, C. Svensson

University of Toronto T. E. Drake

University of Surrey L. Evitts, L. Morrison

St. Mary's University R. A. E. Austin

Effect of target oxidation

Calculating particle detection efficiency: an example

 \bullet In general, if *n* particles are emitted, the probability to detect *i* is given by Eq. [1](#page-30-0)

$$
P(i) = {n \choose i} \varepsilon^i (1 - \varepsilon)^{n - i} \tag{1}
$$

where ε is the particle detection efficiency.

• The probability of detecting the two proton channel in the one proton gate is given by Eq. [2](#page-30-1)

$$
P(2p \text{ in } 1p) = {2 \choose 1} \varepsilon_p^1 (1 - \varepsilon_p)^{2-1} = 2\varepsilon_p (1 - \varepsilon_p) \tag{2}
$$

where ε_p is the proton detection efficiency.

• Similarly, the probability of detecting the two proton channel in the two proton gate is given by Eq. [3](#page-30-2)

$$
P(2p \text{ in } 2p) = \varepsilon_p^2 \tag{3}
$$

Calculating particle detection efficiency: an example

• Take the ratio of probabilities and solve for ε_p :

$$
R = \frac{P(2p \text{ in } 2p)}{P(2p \text{ in } 1p)} = \frac{\varepsilon_p^2}{2\varepsilon_p(1 - \varepsilon_p)} = \frac{\varepsilon_p}{2(1 - \varepsilon_p)}
$$
(4)

$$
\Rightarrow \varepsilon_p = \frac{2R}{1 + 2R}
$$
(5)

- We can calculate the proton detection efficiency for the $36Ar+40Ca$ reaction channel using the 1p1 α and 2p1 α gates.
- The detection probability is reflected in the number of observed gammarays from the nucleus of interest; in this case the 944 keV line in 70 Se.
- The alpha particle detection efficiency is fixed by examining the same alpha particle gate.
- 69141(437) counts in the 1p1 α gate and 5996(121) counts in the 2p1 α gate $\Rightarrow \varepsilon_p = 14.8(4)\%$ from Eq. [5.](#page-31-0)