Exploiting the 8π spectrometer to probe nuclear matter and drive innovative applications at SFU and TRIUMF

K. Starosta, K. Van Wieren, J. Shoults, C. Andreoiu, R. Ashley, A.S. Chester, T. Domingo, U. Rizwan, S. Seeraji, P. Voss, J.E. Williams, and the 8π collaboration

Department of Chemistry
Simon Fraser University

June 17, 2014
The 8π γ-ray spectrometer

- Collaboration between Chalk River and Canadian Universities.
- Funded in 1984 by a joint AECL and NSERC grant.
- Becomes operational in 1986.
- 1986—1997 at TASCC as a high-spin spectrometer.
- 1997—2000 at the 88” Cyclotron as a high-spin spectrometer.
- 2000—2013 at TRIUMF ISAC I as a decay spectrometer.
- In January 2014 moved to SFU.
The designed 8π configuration

- $8\pi = 4\pi + 4\pi$

- The inside 4π shell:
 - γ-ray sum-energy and multiplicity calorimeter,
 - comprised of 72 high-efficiency, low-resolution, BGO detectors.

- The outside 4π shell:
 - high-resolution, low-Compton background measurement of γ-ray spectra,
 - comprised of 20 Compton-Suppressed Spectrometers (CSS),
 - each CSS is comprised of a high-resolution HpGe, a BGO shield and a BGO back-catcher.
TIGRESS 90° clovers summed: ^{60}Co source spectra illustrating effect of **add back** and **Compton suppression**.
The 8π at SFU detector inventory

- 25 HpGe (20—30% efficiency),
- 21 BGO shields,
- 21 BGO back-catchers,
- 12 BGO filter pentagons,
- 62 BGO filter hexagons, 20 of them in 6-element clusters.
Use of the 8π for γ-ray detection at SFU and TRIUMF

- **Nuclear structure far from stability:**
 - trap-assisted decay spectroscopy at TITAN at TRIUMF,
 - spontaneous fission studies at SFU using the Twin Ionisation Chamber for Fission Fragment Investigations (TIFFIN) detector,
 - decay spectroscopy at SFU for fission fragments produced using the deuterium-tritium neutron generator.

- **Neutron activation analysis analysis at SFU:**
 - activity concentration of $(n,2n)$ and (n,γ) reaction products following fast and thermal neutron irradiation using the SFU deuterium-tritium neutron generator.

- **Environmental monitoring at SFU:**
 - activity concentration of ^{134}Cs from the Fukushima accident using a coincidence method for detection of 604-keV/795-keV decay-pair in environmental samples.
8π Spectrometer at TRIUMF-ISAC
The 8π at SFU installation tasks

- Installation of the 8π frame for compatibility with the SFU neutron-generator pneumatic transport system.
- Rebuilding of the 8π to its original design for γ-ray calorimetry.
- Operation of the 8π using the SFU digital Data Acquisition System (DAQ).
- Capacity development at SFU for 8π detector maintenance and development.
Fitting in the 8π: the CAD model
The 8π move
8π BGO hexagons
8π BGO hexagons
8π BGO pentagons
8π BGO pentagons
8π Compton Suppressed Spectrometers
The 8π HpGe annealing station
100MHz 14-bit Digital Data Acquisition System
60Co, pentagon test

Energy [arb.]

Counts

Entries 40872

ch. 721

8π BGO pentagon digital DAQ test
8π HpGe digital DAQ test

60Co

Charge

Counts

Entries 67494

K. Starosta (SFU)
8π HpGe digital DAQ test

![Graph showing counts vs. charge for 60Co with entries 67494 and charge range from 2500 to 2900.]
8π HpGe digital DAQ timing

Point of intersection = t₀

<table>
<thead>
<tr>
<th>Waveform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>RMS</td>
</tr>
</tbody>
</table>
8π HpGe $\gamma - \gamma$ digital DAQ timing test
Use of the 8π for γ-ray detection at SFU and TRIUMF

- **Nuclear structure far from stability:**
 - trap-assisted decay spectroscopy at TITAN at TRIUMF,
 - spontaneous fission studies at SFU using the Twin Ionisation Chamber for Fission Fragment Investigations (TIFFIN) detector,
 - decay spectroscopy at SFU for fission fragments produced using the deuterium-tritium neutron generator.

- **Neutron activation analysis analysis at SFU:**
 - activity concentration of $(n,2n)$ and (n,γ) reaction products following fast and thermal neutron irradiation using the SFU deuterium-tritium neutron generator.

- **Environmental monitoring at SFU:**
 - activity concentration of 134Cs from the Fukushima accident using a coincidence method for detection of 604-keV/795-keV decay-pair in environmental samples.