Search for resonant VH production with a W or Z boson decaying leptonically

Frédérick Dallaire

CAP Congress
17 juin 2014
Motivations

• Higgs discovery : Strong constraint on BSM theories
 • is SM valid at the TeV scale?
• Dynamical electroweak symmetry breaking scenarios
 • new strong interactions
 • new resonances that couple to W, Z and Higgs
• Minimal Walking Technicolor, Little Higgs, Composite Higgs, ...

• Previous CONF note ATL-CONF-2013-074

Analysis is still blinded, no results available yet :(
Minimal Walking Technicolor

- Search for resonant dijet in associated production with a vector boson
 - final states: 0, 1 and 2 leptons
 - electron and muon channel
- 20.3 fb\(^{-1}\) of data collected by the ATLAS detector
- Test of Minimal Walking Technicolor (MWT) model
 - Composite Higgs model based on Walking Technicolor
 - Agrees with EW precision measurements (S-parameter \(\sim 0.3\))
- New resonances: \(R_1\) and \(R_2\)
- \(g/\tilde{g}\): coupling constant to SM particles
- \(\tilde{g}\): mesons-bosons, \(\sim g/\tilde{g}\): mesons-fermions
- \(M_A\): mass scale (sets mass for \(R_1\) and \(R_2\))
Heavy Vector Triplet

- Interpretation in Heavy Vector Triplet models
 - new heavy vector couples to SM particles
 - g_{VcH} : Higgs and gauge bosons
 - g^2c_F/g_V : SM fermions
- Two benchmark models
 - Model A : extension of the SM gauge group (weakly coupled)
 - Model B : Composite Higgs model (strongly coupled)
 - fermionic couplings suppressed

R. Torre et al. 1402.4431
Follow Higgs group working on associated production VH

<table>
<thead>
<tr>
<th>Cut</th>
<th>Loose electron</th>
<th>ZH signal electron</th>
<th>WH signal electron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm e-ID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>\eta_{clus}</td>
<td>$ range</td>
<td>Author = 1 or 3</td>
</tr>
<tr>
<td>E_T range</td>
<td>VeryLoose Likelihood</td>
<td>VeryLoose Likelihood</td>
<td>VeryTight Likelihood</td>
</tr>
<tr>
<td>track Isolation cone 0.2</td>
<td>$</td>
<td>\eta_{clus}</td>
<td>< 2.47$</td>
</tr>
<tr>
<td>calo isolation cone 0.3</td>
<td>7 GeV</td>
<td>25 GeV</td>
<td>25 GeV</td>
</tr>
<tr>
<td>Object Cleaning</td>
<td>sum pT tracks/pT < 0.1</td>
<td>sum pT tracks/pT < 0.1</td>
<td>sum pT tracks/pT < 0.1</td>
</tr>
<tr>
<td></td>
<td>OQ cut</td>
<td>OQ cut</td>
<td>OQ cut</td>
</tr>
</tbody>
</table>

Work in progress

<table>
<thead>
<tr>
<th>Cut</th>
<th>Loose Muon</th>
<th>ZH muon selection</th>
<th>WH muon selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type ID Track Cuts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d_0</td>
<td>Combined/ST passMCP</td>
<td></td>
<td>Combined/ST passMCP</td>
</tr>
<tr>
<td>Z_0</td>
<td>Standalone none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>d_{0,sig}</td>
<td>$</td>
<td>$\eta < 2.7$ 2.5 < η < 2.7</td>
</tr>
<tr>
<td>η</td>
<td>$p_T > 7$ GeV 7 GeV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p_T track Isolation cone 0.2</td>
<td>$\Sigma_{tracks} p_T/p_T < 0.1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>calo Iso cone 0.3</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID - MS cuts</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal electron

mardi 17 juin 2014
Jets

- Anti-kt algorithm, $R = 0.4$
- $p_T > 30$ GeV
- $|\eta| < 2.5$
- b-tagging: MV1c at 70%
 - superior c-jet rejection than MV1 (smaller for light jet)
- Overlap removal
 - jets within $\Delta R < 0.4$ of loose electrons
 - low p_T muons (< 20 GeV) within $\Delta R < 0.4$ of a jet
 - loose electrons within $\Delta R < 0.1$ of a loose muon
Event selection

- At least two jets in the event to form the Higgs mass
- Most selections following Higgs group

W→lv selection
- One electron or one muon with $E_T > 25$ GeV
- 2nd loose electron or muon veto
- Missing $E_T > 30$ GeV
- $M_T(W) > 40$ GeV

Z→ll selection
- Two electrons, one tight with $E_T > 25$ GeV and one VL with $E_T > 7$ GeV
- One tight muon ($E_T > 25$ GeV) and one VL ($E_T > 7$ GeV)
- Missing $E_T < 60$ GeV
- $83 < M(ll) < 99$ GeV
- Same flavor requirement

Z→νν selection
- Missing $E_T > 120$ GeV
- Missing $p_T > 30$ GeV
- $\Delta \phi(MET, MPT) < \pi/2$
- $\Delta \phi(MET, j) > 1.5$
Backgrounds

<table>
<thead>
<tr>
<th>Process</th>
<th>Generator</th>
<th>$\sigma \times BR$</th>
<th>N_{events}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \rightarrow \ell\nu$</td>
<td>SHERPA 1.4.1</td>
<td>10.97 nb</td>
<td>168M</td>
</tr>
<tr>
<td>$Z/\gamma* \rightarrow \ell\ell$</td>
<td>SHERPA 1.4.1</td>
<td>1.24 nb</td>
<td>42M</td>
</tr>
<tr>
<td>$Z/\gamma* \rightarrow \nu\nu$</td>
<td>SHERPA 1.4.1</td>
<td>6.71 nb</td>
<td></td>
</tr>
<tr>
<td>WW</td>
<td>POWHEG+PYTHIA</td>
<td>55.43 pb</td>
<td>10M</td>
</tr>
<tr>
<td>WZ</td>
<td>POWHEG+PYTHIA</td>
<td>22.69 pb</td>
<td>20M</td>
</tr>
<tr>
<td>ZZ</td>
<td>POWHEG+PYTHIA</td>
<td>7.697 pb</td>
<td>7.5M</td>
</tr>
<tr>
<td>Top-quark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>POWHEG</td>
<td>238.06 pb</td>
<td>75M</td>
</tr>
<tr>
<td>t-channel</td>
<td>ACER</td>
<td>87.76 pb</td>
<td>9M</td>
</tr>
<tr>
<td>s-channel</td>
<td>POWHEG</td>
<td>5.61 pb</td>
<td>6M</td>
</tr>
<tr>
<td>Wt-channel</td>
<td>POWHEG</td>
<td>22.37 pb</td>
<td>20M</td>
</tr>
</tbody>
</table>

- $\text{V+jets} :$ shape from MC, rate from data
- $\text{ttbar} :$ shape + rate from MC
- $\text{diboson} :$ shape + rate from MC
- QCD multijet is data driven
Signal region

- $105 < M_{bb} < 145$ GeV
- kinematic cuts on $lljj$ or $lvjj$ candidate
- $p_T(j) > 0.1 \times M_{lljj}$
- $p_T(V) > -77 + 0.48 \times M_{Vjj}$
- $\Delta\Phi(ll) > 9.7 \times 10^7/M_{lljj}^{3.28} + 1$ (2-lepton only)
- single BG shape as M_{lljj} is varied
- optimized by Higgs group for this analysis

MC Only
Control regions

V+jets CR
- selection of W/Z candidate + 2 jets with $p_T > 30$ GeV
- 0, 1 and 2 b-tag regions
 - SR cuts in M_{jj} sideband (1 and 2 tag)

ttbar CR
- 1-lepton : at least 4 jets in the event
- 2-lepton : $e\mu$ events

QCD CR
- missing $E_T < 30$ GeV
- no $\Delta\phi$ (jet, MET) cut
Control regions (2)

Preliminary results

0 tag

Blinded!

1 tag
Systematics

Objects
- 14 independant components for JES
- JER
- Energy scale + smearing for leptons
- p_T reconstruction + b-jet corrections
- b-tagging efficiencies:
 - Light jet b-tagging : 10 NP
 - c-jet b-tagging : 15 NP
 - b-jet b-tagging : 10 NP

Shape
- Diboson → Herwig vs Pythia
- QCD → invert lepton isolation (one lepton analysis)
- Signal → renormalization factor, eigenvectors with CTEQ66
Very Preliminary results

1 tag

\[S/\sqrt{B} \sim 0.9 \]

2 tag

\[S/\sqrt{B} \sim 1.6 \]

- expect to have a sensitivity for masses up to \(~1.2\) TeV
Samples

<table>
<thead>
<tr>
<th>Dataset Number</th>
<th>M_A [GeV]</th>
<th>S parameter</th>
<th>\tilde{g}</th>
<th>Higgs mass [GeV]</th>
<th>$\sigma \times BR$ [fb]</th>
<th>$\sigma \times BR$ [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>182177</td>
<td>300</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>50.48</td>
<td>74.03</td>
</tr>
<tr>
<td>182178</td>
<td>400</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>6.467</td>
<td>8.612</td>
</tr>
<tr>
<td>182179</td>
<td>500</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.7784</td>
<td>0.9767</td>
</tr>
<tr>
<td>182180</td>
<td>600</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.3002</td>
<td>0.3573</td>
</tr>
<tr>
<td>182181</td>
<td>700</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.5161</td>
<td>0.6060</td>
</tr>
<tr>
<td>182182</td>
<td>800</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.7266</td>
<td>0.8312</td>
</tr>
<tr>
<td>182183</td>
<td>900</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.8146</td>
<td>0.9175</td>
</tr>
<tr>
<td>182184</td>
<td>1000</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.7636</td>
<td>0.8523</td>
</tr>
<tr>
<td>182185</td>
<td>1100</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.6540</td>
<td>0.7207</td>
</tr>
<tr>
<td>182186</td>
<td>1200</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.5382</td>
<td>0.5860</td>
</tr>
<tr>
<td>182187</td>
<td>1300</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.4527</td>
<td>0.4805</td>
</tr>
<tr>
<td>182188</td>
<td>1400</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.3922</td>
<td>0.4209</td>
</tr>
<tr>
<td>182189</td>
<td>1500</td>
<td>0.3</td>
<td>2</td>
<td>126</td>
<td>0.3358</td>
<td>0.3572</td>
</tr>
</tbody>
</table>

- Produced with MadGraph4
- Samples generated for only one value of \tilde{g}
 - cross sections are affected, not kinematics
- Limits in the M_A vs \tilde{g} plane
 - parton level for $\tilde{g} > 2$

arXiv:1405.4123
Conclusion

- Latest version of the paper to be circulated to the Editorial Board by the end of the week
 - hopefully a meeting next week
- We should get the green light for unblinding