HIGH-PRECISION
HALF-LIFE AND
BRANCHING-RATIO
MEASUREMENTS FOR
THE SUPERALLOWED
β^+ EMITTER $^{26}\text{Al}^m$

Dr. Paul Finlay, DNP Thesis Prize Winner 2013
Department of Physics, University of Guelph, Ontario, Canada
Overview

- Introduction
 - Superallowed Fermi β decay – Why $^{26}\text{Al}_m$?
- Experiment
 - Half-life of $^{26}\text{Al}_m$
 - Branching Ratios for $^{26}\text{Al}_m$ Decay
- Results and Discussion
 - The $^{26}\text{Al}_m ft$ and Ft values
 - Impact
- Future Work
Superallowed Fermi β Decay: Corrections

$$\mathcal{F}t = ft \left(1 + \delta'_R \right) \left(1 + \delta_{\text{NS}} - \delta_C \right) = \frac{K}{2G_V^2 \left(1 + \Delta^V_R \right)} = \text{constant}$$

- Δ^V_R = nucleus independent inner radiative correction: 2.361(38)%
- δ'_R = nucleus dependent radiative correction to order $Z^2\alpha^3$: ~1.4%
 - depends on electron’s energy and Z of nucleus
- δ_{NS} = nuclear structure dependent radiative correction: -0.3% – 0.03%
- δ_C = nucleus dependent isospin-symmetry-breaking correction: 0.2% – 1.5%
 - strong nuclear structure dependence

$$\delta_C = \delta_{C1} + \delta_{C2} \quad \text{(isospin mixing plus radial overlap)}$$
Several approaches to ISB corrections

→ Nuclear Shell Model

→ Relativistic Hartree-Fock

→ Random Phase Approximation

→ Energy Density Functional theory
Two approaches to δ_{C2}

Use radial wave functions derived from a Woods-Saxon (WS) potential, or use Hartree-Fock (HF) eigenfunctions.

Isospin-Symmetry-Breaking Corrections

Two approaches to \(\delta_{C2} \)

Use radial wave functions derived from a Woods-Saxon (WS) potential, or use Hartree-Fock (HF) eigenfunctions.

\[
\langle \bar{F}t \rangle = 3071.81 \pm 0.79_{\text{stat}} \pm 0.27_{\text{syst}} \text{ s}
\]

I.S. Towner and J.C. Hardy, Physical Review C 77, 055501 (2008)

J.C. Hardy and I.S. Towner, Physical Review C 79, 055502 (2009)
\[ft = 3036.9(5)f(9)_{T_{1/2}} \text{s} \]

\[Ft = 3072.4(6)\delta_R(8)\delta_{C-NS}(9)ft\text{ s} \]

\[\delta_{C-NS} = 0.305(27)\% \]

J.C. Hardy and I.S. Towner, Physical Review C 79, 055502 (2009)
TRIUMF: Canada’s National Laboratory for Nuclear and Particle Physics Research
Measuring Superallowed Half Lives

- **Beam**
 - **Cycle**
 - Implant 6-14 s
 - Allow ^{26}Na to decay 26-34 s
 - Move tape to detector and count $^{26}\text{Al}^m$ decays for ~20, 25, 30 half-lives, then repeat.
 - Change detector voltage, discriminator setting, and swap fixed, nonextendable dead times between two MCS units to investigate systematic effects.

- $^{26}\text{Al}^m$: $T_{1/2} = 6.3465$ s
- ^{26}Na: $T_{1/2} = 1.072$ s
- $^{26}\text{Al}^g$: $T_{1/2} = 7.4 \times 10^5$ yrs
Counts per 500 ms

\[\chi^2 / \nu = 0.81 \]

\[T_{1/2}(^{26}\text{Al}^m) = 6.344(4) \text{ s} \]

41 cycles

Fractional uncertainty = 0.077\%
$T_{1/2}^{^{26}\text{Al}} = 6.34649 \pm 0.00046 \text{ s}$

$\chi^2/\nu = 1.020$

Stat. uncertainty = 0.007%
Assigning a systematic uncertainty

\[\sigma = \sqrt{2.67 \sigma_{\text{stat.}}} = 0.75 \text{ ms} \]

\[\sigma_{\text{stat.}} = 0.46 \text{ ms} \]

\[\sigma_{\text{syst.}} = 0.59 \text{ ms} \]

\[\sigma_{\text{dead}} = 0.045 \text{ ms} \]

Two independent analyses

1) 6346.59 ms
2) 6346.49 ms

\[\sigma_{\text{ind}} = 0.05 \text{ ms} \]

\[T_{1/2} = 6346.54(76) \text{ ms} \]
Comparison with previous results

New world average: $6.34643(68)$ s

This work: $6.34654(76)$ s

$\chi^2/\nu = 0.45$

The 8π Spectrometer and SCEPTAR at ISAC-I

- 20 Compton-Suppressed HPGe detectors
- 20 plastic scintillators
- 8π Spectrometer
- Mass 26 beam from ISAC
- Tape transport

SCEPTAR
Branching Ratios for $^{26}\text{Al}^m$ Decay

^{26}Na

$Q_{\beta^-} = 9312$

$Q_{EC}(3^+) = 291.1$ keV

$Q_{EC}(0^+)_1 = 644.1$ keV

$Q_{EC}(2^+_2) = 1294.3$ keV

$Q_{EC}(2^+_1) = 2424.0$ keV

$Q_{EC}(0^+) = 4232.66(12)$ keV

^{26}Mg

1.072 s

3^+

0^+

2^+

2133 keV [38%]

1003 keV [62%]

1780 keV

1130 keV [90%]

2938 keV [10%]

1809 keV

0^+

5^+

1228 keV

0

7.17×10^5 yrs

$Q = 3.4643$ s

^{26}Al

228.3
Cycle Structure

First a 2s tape move

4s background counting

Implant for 21s

Start of photopeak time structure analysis window

Start of late times analysis window

End of analysis time windows

β counts / 0.2 s

Time (s)
Determining $^{26}\text{Al}^m$ non-analog intensity

$^{2561(140)}\text{Al}^m$ counts

$^{1809\text{keV}}\gamma$-ray activity

Fit

^{26}Na activity

$^{26}\text{Al}^m$ activity

Background activity
Determining $^{26}\text{Al}^m$ non-analog intensity

$^{26}\text{Al}^m$ counts

$17163(202)$

$-1.0 +/- 10\text{ppm}$

$^{26}\text{Al}^m$ 1809 BR
Fit 1809 keV peak area vs. time with ^{26}Na and $^{26}\text{Al}^m$ components.
Fit 1809 keV peak area vs. time with 26Na and 26Alm components.
Fit 1809 keV peak area vs. time with ^{26}Na and $^{26}\text{Al}^m$ components.
Fit 1809 keV peak area vs. time with ^{26}Na and $^{26}\text{Al}_m$ components.
Figure: Fit 1809 keV peak area vs. time with 26Na and 26Alm components.
158(186) $^{26}\text{Al}^m$ counts

$\chi^2/\nu = 1.03$

5.5+/-6.5ppm $^{26}\text{Al}^m$ BR
26Al Non-Analog Branching Ratios

All measured BR consistent with zero

Total non-analogue decay:

- 5.5+/−6.5 ppm (peak area vs. time)
 - ≤ 10 ppm @ 67% CL
 - ≤ 15 ppm @ 90% CL

Direct feeding of 1809 keV:

- -0.9+/−5.7 ppm (late time analysis)
 - ≤ 5 ppm @ 67% CL
 - ≤ 12 ppm @ 90% CL

\[ft = \frac{ft_{\frac{1}{2}} (1 + P_{EC})}{SBR} \]

\[P_{EC} = 0.082 \% \]

\[ft = 478.237(80) \]

\[t_{\frac{1}{2}} = 6346.43(68) \text{ ms} \]

\[SBR = 100.0000_{-0.0015}^{+0} \% \]

\[ft = 3037.58(51) f(32)_{T_{\frac{1}{2}}} (5)_{BR} \text{ s} \]

Most precise \(ft \) for any superallowed emitter
$\delta'_R = 1.478(20) \%$

$\delta_{NS} = 0.005(20) \%$

$\delta_C = 0.310(18) \%$

$\mathcal{F}t = \mathcal{F}t(1 + \delta'_R)(1 + \delta_{NS} - \delta_C)$

$= 3073.1(6)\delta'_R, (8)\delta_C - \delta_{NS}(6)\mathcal{F}t$ s

$\mathcal{F}t_{26Al^{m}} = 3073.1(12)$ s

$\mathcal{F}t_{\text{other}} = 3072.0(10)$ s

Based on J.C. Hardy and I.S. Towner, Physical Review C 79, 055502 (2009)
$\delta'_{R} = 1.478(20) \%$

$\delta_{NS} = 0.005(20) \%$

$\delta_{C} = 0.440(51) \%$

$Ft = ft(1 + \delta'_{R})(1 + \delta_{NS} - \delta_{C})$

$= 3069.1(6)\delta'_{R}(17)\delta_{C} - \delta_{NS}(6)ft \ s$

$Ft_{26Al^m} = 3069.1(19) \ s$

$Ft_{other} = 3072.3(10) \ s$

Based on J.C. Hardy and I.S. Towner, Physical Review C 79, 055502 (2009)
“Experimental” δ_C

$$\delta_C = 1 + \delta_{NS} - \frac{\mathcal{F} t \,(^{26}\text{Al}^m)}{ft \,(1 + \delta'_R)}$$

-Woods-Saxon δ_C continue to form an impressively consistent set

-Hartree-Fock δ_C do not exhibit the same degree of conformity
\bar{Ft} ($^{26}\text{Al}^m$)
WS: 3073.0(12) s

\bar{Ft} (no $^{26}\text{Al}^m$)
WS: 3072.0(10) s
\(\mathcal{F}_t \left(^{26}\text{Al}^m \right) \)

WS: 3073.0(12) s

HF: 3069.0(19) s

\(\overline{\mathcal{F}_t} \ (\text{no} \ ^{26}\text{Al}^m) \)

WS: 3072.0(10) s

HF: 3072.3(10) s
Hartree-Fock vs. Woods-Saxon and World-Averaged $\mathcal{F}t$

$\mathcal{F}t$ ($^{26}\text{Al}^m$)
WS: 3073.0(12) s
HF: 3069.0(19) s

$\overline{\mathcal{F}t}$ (no $^{26}\text{Al}^m$)
WS: 3072.0(10) s
HF: 3072.3(10) s

$\overline{\mathcal{F}t}$ (with $^{26}\text{Al}^m$)
WS: 3072.38(75) s
HF: 3071.59(87) s

Systematic uncertainty
$= 0.79$ s
Further tests of ISB corrections??????

- Need to test superallowed corrections but independent of superallowed data!

- Want to avoid assuming CVC
T=1/2 Mirror Nuclei

- Dominated by experimental uncertainties.
- Also require δ_C corrections.
- Different nuclear structure than superallowed

\[A_{SM} = \frac{-\lambda_{JJ} \rho^2}{1 + \rho^2} = 2Ft_{\text{mirror}}^0 \left(1 + \frac{f_A}{f_V} \rho^2 \right) = 2Ft_{0^+\rightarrow0^+} = \frac{K}{G_F^2 V_{ud}^2 (1 + \Delta_R^V)} \]

Mirror ft values at TRIUMF

Approved Experiments:

S1192 – Half-life and BR, 19Ne
S1385 – Half-life for 21Na
S1517 – Half-life and Q-value for 35Ar

Q-value measurement @ TITAN

$Q_{EC} = m_m - m_d$

- Precision advantage
 - PRL 107, 272501 (2011)
 - $\frac{\Delta m}{m} = \frac{1}{2\pi \nu}
 - @ BTN

- Threshold charge breeding for isotopic separation

He-like charge state

35Ar$: (SCI from ISAC)$

20O$: (SCI isotopically pure from OLI)$

Description of 35Ar half-life measurement

$T_{1/2}(^{35}$Ar$) = 1.7754 \pm \varepsilon$

- 37K: $T_{1/2} = 64.761 \pm 0.004$ (2003)
- 39Na: $T_{1/2} = 1.0546 \pm 0.004$ (2005)
- 41Ca: $T_{1/2} = 116.121 \pm 0.003$ (2008)
- 39K: $T_{1/2} = 924.46 \pm 0.46$ (2010)
- 41Ar: $T_{1/2} = 6.34654 \pm 0.00004$ (2011)
- 41Ca: $T_{1/2} = 1.672 \pm 0.001$ (in preparation)
- 40Ca: $T_{1/2} = 19.29 \pm 0.01$ (in preparation)

Cycle Structure

- Implant ~1 s.
- Move tape (2 s) to detector and count 35Ar decays for between 15 and 25 half-lives, then repeat.
- Change detector voltage, discriminator setting, dwell times, and swap fixed, nonextendable dead times between two MCA units to investigate systematic effects. → Many cycles.
Mirror f_t values at TRIUMF
High-precision half-life and branching-ratio measurements for $^{26}\text{Al}^m$, carried out at TRIUMF, have resulted in the most precise superallowed ft and Ft values for any superallowed emitter to date.

This unrivaled precision for the $^{26}\text{Al}^m ft$ and Ft values yields one of the most demanding consistency tests of leading isospin-symmetry-breaking corrections for these decays, required in order to extract V_{ud}, and currently a leading source of uncertainty.

Going forward, ft-value measurements for the isospin $T=1/2$ mirror nuclei offer an excellent opportunity to test and refine these calculations, with the goal of improving the uncertainty in V_{ud} and further constraining physics beyond the Standard Model.
Acknowledgements

University of Guelph
G. Demand
P.E. Garrett
A.A. Phillips
E.T. Rand
C.E. Svensson
J. Wong

TRIUMF
G.C. Ball
D. Bandyopadhyay
M. Djongolov
S. Ettenauer
G. Hackman
K.G. Leach
C.J. Pearson

Queens University
J.R. Leslie

St. Mary’s University
R.A.E. Austin

NSCL/MSU
C.S. Sumithrarachchi
S.J. Williams

GANIL
G.F. Grinyer

Simon Fraser University
C. Andreoiu
D. Cross

CERN
S. Ettenauer

University of the Western Cape
S. Triambak
The Cabibbo-Kobayashi-Maskawa (CKM) matrix

The CKM matrix plays a central role in the Standard Model
describes the mixing of different quark generations:
weak interaction eigenstates ≠ quark mass eigenstates

\[
\begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\begin{pmatrix}
d' \\
s' \\
b'
\end{pmatrix}
=
\begin{pmatrix}
d \\
s \\
b
\end{pmatrix}
\]

\[|V_{ud}| = \frac{G_V}{G_F}\]

In the Standard Model the CKM matrix
describes a unitary transformation.

\[V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 1\]

The first row of the CKM matrix provides the most
demanding experimental test of this unitarity condition.
To first order, β decay ft values can be expressed as:

$$ft = \frac{K}{|M_{fi}|^2 g^2}$$

phase space (Q-value) \hspace{2cm} \text{constants} \hspace{2cm} \text{Weak coupling strength}

half-life, branching ratio \hspace{2cm} \text{matrix element}

For the special case of $0^+ \rightarrow 0^+$ (pure Fermi) β decays between isobaric analogue states (superallowed) the matrix element is that of an isospin ladder operator:

$$|M_{fi}|^2 = (T - T_Z)(T + T_Z + 1) = 2 \hspace{0.5cm} \text{(for } T=1)$$

$$G_V^2 = \frac{K}{2 ft} \hspace{2cm} |V_{ud}| = \frac{G_V}{G_F}$$

Vector coupling constant \hspace{2cm} Fermi coupling constant
Superallowed ft-values

\[ft \approx \frac{K}{2 G_v^2} = \text{constant (CVC)} \]

J.C. Hardy and I.S. Towner, Physical Review C 79, 055502 (2009)
\[Q \text{-value established to 0.003\%} \]
\[T_{1/2} \text{ dominant uncertainty in ft.} \]
\[\text{Superallowed BR is } \sim 100\% \]

Counting the number of β particles

Read out event by event

Energies → Low-energy cut

Times → Gate on good events

Distinguish β and $\beta\gamma$ triggers → Scale down β singles
SCEPTAR Efficiency

\[
\text{Beta Eff.} = 76.8(16)\% \\
\text{2\% uncertainty}
\]

\begin{align*}
\text{Ground State, } Q_{\beta^+} &= 3210.66 \text{ keV} \\
1809 \text{ keV, } &Q_{\beta^+} = 1402.96 \text{ keV} \\
2938 \text{ keV, } &Q_{\beta^+} = 272.32 \text{ keV}
\end{align*}

\[\beta^+ \text{ efficiency relative to } \beta^- \text{ efficiency for } ^{26}\text{Na} \text{ (1809 keV)}\]

\[\text{Beta Eff.} = 76.8(16)\%\]
8π Efficiency

\[\ln(\epsilon) = \sum_{i=0}^{8} a_i (\ln E)^i \]

\[\text{Eff.}(1809 \text{ keV}) = 0.750(15)\% \]
Transitions to other excited states dominated by EC, so beta-anti-coincidence gamma-ray data used in this analysis at late times in the cycle.

<table>
<thead>
<tr>
<th>Level (J^π, E)</th>
<th>γ ray (keV)</th>
<th>Peak area (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3_1^+ , 3942 keV</td>
<td>1003</td>
<td>11(12)</td>
</tr>
<tr>
<td>0_1^+ , 3589 keV</td>
<td>2133</td>
<td>-10(6)</td>
</tr>
<tr>
<td>2_2^+ , 2938 keV</td>
<td>1130</td>
<td>3(10)</td>
</tr>
<tr>
<td>5^+ , ^{26}Al^9</td>
<td>228</td>
<td>3(15)</td>
</tr>
</tbody>
</table>
The Radial Overlap Correction: δ_{C2}

J.C. Hardy and I.S. Towner, Physical Review C 79, 055502 (2009)
Z-dependence in Radial Overlap Correction
The Resulting Precision in G_V

Prior to this work:

$$G_V^2 = \frac{K}{2(1 + \Delta^V_R)Ft} ,$$

$$G_V^2 / (\hbar c)^6 = 1.29126(33)_{\text{stat.}} (11)_{\delta C} (48)_{\Delta^V_R} \times 10^{-10} \text{ GeV}^{-4} ,$$

$$G_V / (\hbar c)^3 = 1.13633(15)_{\text{stat.}} (5)_{\delta C} (21)_{\Delta^V_R} \times 10^{-5} \text{ GeV}^{-2} ,$$

$$= 1.13633(26) \times 10^{-5} \text{ GeV}^{-2} .$$

Following this work:

$$G_V^2 / (\hbar c)^6 = 1.29118(32)_{\overline{F}_{\text{stat.}}} (17)_{\overline{F}_{\text{syst.}}} (48)_{\Delta^V_R} \times 10^{-10} \text{ GeV}^{-4}$$

$$G_V / (\hbar c)^3 = 1.13630(14)_{\overline{F}_{\text{stat.}}} (8)_{\overline{F}_{\text{syst.}}} (21)_{\Delta^V_R} \times 10^{-5} \text{ GeV}^{-2} ,$$

$$= 1.13630(27) \times 10^{-5} \text{ GeV}^{-2}$$