

The VERITAS Upgrade: Performance and Status

Sean Griffin -- McGill University (for the VERITAS Collaboration)

2014 CAP Congress Laurentian University Sudbury, ON June 15th – 21st , 2014

VERITAS

Very Energetic Radiation Imaging Telescope Array System

~100 collaborators: 21 institutions in the US, Canada, Ireland, the UK and Germany

VERITAS Technical Performance

- Energy range:
 - ~60 GeV (post upgrade; depends on analysis cuts) to 30 TeV
- Energy Resolution:
 - ~15% above 300 GeV
- Angular resolution:
 - $r_{68} \sim 0.1^{\circ} @ 1 \text{ TeV}$
 - $r_{68} \sim 0.4^{\circ}$ @ 200 GeV
- Systematic errors:
 - Flux: 20%
 - Spectral index: ~0.2

Imaging Atmospheric Cherenkov Technique

- VHE gamma rays pair produce in the upper atmosphere, starting an air shower.
- Secondary particles in the shower are highly energetic and have speeds > c/n.
- Cherenkov radiation is emitted creating a pool of light on the ground ~10⁵ m²
- Allows us to use the whole atmosphere as the detection medium.
- By placing telescopes in the pool, we can image the shower.

How does it work?

- Image shape → particle type
 γ-ray like, hadrons, muons
- Image axis $\rightarrow \gamma$ -ray **orientation**
- Intensity $\rightarrow \gamma$ -ray **energy**
- Spectral reconstruction comes from comparing data to simulations.
- Stereoscopic view of a shower greatly improves:
 - angular & energy resolution
 - γ / hadron separation (background rejection)
 - sensitivity

VERITAS

- Since full array operations began in 2007, VERITAS has undergone a number of upgrades
- Improved mirror alignment \rightarrow better optical PSF
- Telescope relocation (2009)
- Communications upgrade to fiber optics (2010)
 1 G b/s → 2 Gb/s with LACP (full redundancy)
- Telescope-level trigger upgrade (2011)
- Camera upgrade (2012)

T1 Relocation (2009)

T1 Relocation (2009)

T1 Relocation (2009)

- Telescope moved to make array more symmetric
- 30% improved sensitivity
- 25% improved effective area
- Improved angular resolution

Trigger & Camera Upgrade (Motivation)

- Higher rates
 - Spend less time on any given target
 - Look at more objects →
 more potential for science
- Lower energy threshold
 - More potential sources
 - Close gap with Fermi
 - Can probe lower DM masses → increases overall DM sensitivity

LSI +61 303 (x-ray binary) Aliu et al. (2013)

The VERITAS Trigger

- L1: CFD on individual PMTs
 - ~ 5 photoelectrons
 - ~few MHz
- L2: Pattern trigger
 - 3-fold coincidence within ~5 ns
 - 5-10 kHz
- L3: Array-level trigger
 - >= 2 telescopes within 50 ns
 - 400-500 Hz
- Save
 - 500MS/s 8-bit FADCs
 - Data rate: 25 GB/hour

2011 Trigger Upgrade: L2 FPGA-based pattern trigger

 Pixel-to pixel timing now +/- 1 ns

- Narrower coincidence window (8 \rightarrow 5 ns)
- Lower CFD threshold for the same trigger rate means that we can trigger on lower energy showers.

8ns 5ns

60

PreInstall

70

CFD Threshold (mV)

80

2012 Camera Upgrade

Pulses ~40% more narrow

Less noise in signal region

Old: Photonis XP2970 New: Hamamatsu R10560

13

2014/06/17

Muon Light Yields

PMT & Trigger Upgrade

10⁶ Upgrade **Pre-Upgrade 30% decrease** in energy 10⁴ threshold for soft and Soft cuts standard analysis cuts 10³ 10² 10 1 1.5 2 log₁₀ energy [TeV] -1.5 -0.5 0.5 -1 0

Sensitivity Boost

VER J0521+211 1 hour exposure 5.8 sigma → 8 sigma

Sean Griffin -- McGill University

EXTRA

Bright Moonlight Program

- Main motivation: To increase the duty cycle of VERITAS
- Observing under moderate moonlight (35-65% illuminated) possible by reducing HV on PMTs.
 - − 81% HV \rightarrow 30% nominal gain
 - Energy threshold ~200 GeV
- Observing under bright moonlight (even full moon) made possible by using UV filters.
 - Energy threshold strongly dependent on moon illumination and angle (350-500 GeV)
- Extra ~250 hours of observing a year → 20% increase in exposure above 1 TeV

The Filters

The Filters

Bright Moonlight Program

- Useful for monitoring sources for flares
 - We have detected a flaring blazar because of this; paper in preparation
- Increased exposure during periods of activity
 - No longer need to stop observing an active target because the moon is too bright.
- Also able to observe objects that are optically bright or targets that are close to the moon.
 - Electron / positron moon shadow, Orion
 Nebula, Crab occultation

Conclusions

- VERITAS has undergone several upgrades since 2009:
 - Higher sensitivity (factor of 2 for soft spectrum)
 - Lower energy threshold
 - Better angular resolution
- New bright moonlight program
 - Increases exposure above 1 TeV by ~20%
 - Starting to yield science results -- stay tuned!

References

- Aliu et al. (2013), ApJ, 779:88 (<u>http://arxiv.org/abs/1310.7913</u>)
- Perkins & Maier [VERITAS Collaboration] (2013), 2009 Fermi Symposium (<u>http://arxiv.org/abs/0912.3841</u>)
- Rajotte [VERITAS Collaboration] (2013), Proc. RICH 2013
- Zitzer [VERITAS Collaboration] (2013), Proc.
 33rd ICRC (<u>http://arxiv.org/abs/1307.8360</u>)