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Trends of StatPhysics Researches
macroscopic collective phenomena <—> microscopic interactions

Statistical Physics

Simple ! Complex 
heterogeneous & competing 
interactions,  
!
multiple time scale, 
!
glasses, colloids, … 
!
complex networks, …

Equilibrium!

non-equilibrium 
Fluctuation relations, 
!
active matter, … 
!
ageing dynamics, …

Physics!

Interdisciplinary 
game process,  
!
computational complexity,  
!
optimization, …



Spin Glass & 
Optimization

Fu, Anderson (1986):  
Traveling Salesman Problem, Graph 
Partitioning 

!
Kirkpatrick, Gelatt, Vecchi (1983): 
  Simulated Annealing 
!
Mezard, Parisi, Zecchina (2002):  

K-SAT & Survey-Propagation 
!
Mezard, Montanari (2009):  

“Information, Physics, and Computation” 
(Oxford Univ Press)
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Feedback Vertex Set 
!

(a NP-hard problem with global constraints)



Undirected graph:  
What is a FVS?
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• FVS:   
a set of vertices, removal of which breaks all 
cycles (loops) 
!

• minimum FVS:   
FVS of global minimum size or total vertex-weight 
!

• NP-complete problem:  
unlikely to have an guaranteed efficient algorithm
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Directed graph: 
What is a FVS?
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• FVS: 
a set of vertices, removal of which breaks all 
directed cycles 
!

• minimum FVS: 
 FVS of global minimum size or total vertex-weight 
!

• NP-complete: 
try not for best solution, but for better solution
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Vertices in minimum FVS dynamically important
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1. FVS as boundary 
!

2. Given a boundary state, 
   dynamics of each tree 
   component easy to obtain 
!
3. FVS vertices cause 
    feedback to dynamics 
!
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An application: 
!
gene/protein 
interaction



Decompose a network into different layers
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1st layer:  
The largest forest 
!
2nd layer: 
The largest forest in  
min-FVS subgraph 
!
3rd layer: 
… 



why not easy from statistical physics approaches?

Main reason:  
!
Statistical physics methods best suited to problems with 
local (few-body) interactions, ……  
!
…… but,  cycles are global properties, can not be judged 
from looking just at single vertices or edges
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Goal: construct a FVS of (close to) minimum size



Previous algorithmic approach
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Bafna, Berman, Fujito, SIAM J. Discrete Math. 12, 289-297 (1999).



14

FEEDBACK

It’s a local algorithm, 
recursively removes  
vertices and then 
simplify the graph. 
(vertex chosen 
based on current 
degree).

Guarantees that the 
size of the FVS is 
At most two times of 
The minimum size 
( so far best guarantee)



In this talk
Minimum FVS as spin-glass 
!

– Define a spin model; 
!

– mean-field theory; 
!

– Message-passing algorithm; 
!

– Application to random 
graphs and lattices 
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We consider mainly undirected graphs in this work 
(directed graphs briefly discussed in the end)



global cycle constraints ! local edge constraints
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Main observations: 
»  
Vertex either deleted (belongs to FVS) or remains in 
graph. 
!
»   
If a vertex remains in graph, it must belong to a tree 
component. 
!
»   
For a tree component, after assigning one vertex as root,   
a parent-child relationship can be defined for any two 
neighboring vertices.



global cycle constraints ! local edge constraints
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A graphical representation of states
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Closed circle:       occupied         
open circle:          unoccupied 
arrow on edge:    pointing from child to parent   



global cycle constraints ! local edge constraints
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partition function
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belief propagation equations
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Single vertex marginal probability:
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Belief-propagation (BP) equation:

HJZ: European Physical Journal B (2013)



Computing thermodynamic quantities
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Free entropy:  
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occupation desity entropy density
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occupation desity entropy density



belief propagation-guided decimation
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Results: II  
Comparison between theory and algorithms 

Erdos-Renyi Random graphs
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RS theory corresponds to infinitely large system; 
!
while each point of algorithm is obtained by 
averaging over 96 random graphs of size N=100,000.



Results: III  
Comparison between theory and algorithms 

Regular Random graphs
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RS theory corresponds to infinitely large system; 
while each point of algorithm is obtained by 
averaging over 96 random graphs of size 
N=100,000.

Lower-bound: Bau, Wormald, Zhou, 2002



Results. IV
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!
Belief-propagation decimation works also good in 

regular lattices: 
!

 ➔2D square lattice, 35.2% vertices in constructed FVS    
as compared to 50% by FEEDBACK. 
This value is close to the rigorous lower-bound 33.3% 
!

➔ 3D cubic lattice, 42.2% vertices in constructed FVS  
as compared to 50% by FEEDBACK. 

This value is close to the rigorous lower-bound 40.0%



Model for FVS of directed graph
•  
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Lucas, Arxiv (2013)



  
DFVS: Comparison between theory and algorithms 

Erdos-Renyi Random directed graphs
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Erdos-Renyi random digraph

RS theory corresponds to infinitely large system; 
!
while each point of algorithm is obtained by 
averaging over 96 random graphs of size N=100,000.



  
DFVS: Comparison between theory and algorithms 

Regular Random directed graphs

330 5 10 15 20
Degree

0

0.2

0.4

0.6

FV
S 

re
la

tiv
e 

siz
e

SA
BPD (x=50)
RS theory

Regular random digraph

RS theory corresponds to infinitely large system; 
!
while each point of algorithm is obtained by 
averaging over 96 random graphs of size N=100,000.



Conclusion
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A.Undirected and directed Feedback Vertex Set (FVS) 
problem solved by replica-symmetric mean-field theory. 

!
B.Belief propagation-guided decimation (BPD) message-

passing algorithm achieves good performance on random 
problem instances.



On-Going Work:
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➢ Computing the phase diagrams of random graph 
ensembles by 1RSB mean-field theory. 
!

➢ Apply simulated annealing and other local optimization 
algorithms to FVS problem. 
!

➢ Apply the FVS problem to studying the dynamical 
property of some processes on complex networks.


