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Feedback Vertex Set

(a NP-hard problem with global constraints)



Undirected graph:
What is a FVS?

A feedback vertex set (FVS): {4,5,10,13}



e FVS:

a set of vertices, removal of which breaks all
cycles (loops)

* minimum FVS:
FVS of global minimum size or total vertex-weight

* NP-complete problem:
unlikely to have an guaranteed efficient algorithm



Directed graph:
What is a FVS?

A feedback vertex set (FVS): {1,13}



e FVS:

a set of vertices, removal of which breaks all
directed cycles

* minimum FVS:
FVS of global minimum size or total vertex-weight

 NP-complete:
try not for best solution, but for better solution



Vertices in minimum FVS dynamically important

1. FVS as boundary

2. Given a boundary state,
dynamics of each tree
component easy to obtain

3. FVS vertices cause
feedback to dynamics




Feedback vertex sets

as Informative and determining nodes An application:
of regulatory network dynamics gene/protein
interaction
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Decompose a network into different layers

1st layer:
The largest forest

2nd layer:
The largest forest in
min-FVS subgraph

3rd layer:
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(Goal: construct a FVS of (close to) minimum size

Main reason:

Statistical physics methods best suited to problems with
local (few-body) interactions, ......

...... but, cycles are global properties, can not be judged
from looking just at single vertices or edges
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Previous algorithmic approach

SIAM J. DISCRETE MATH. (C) 1999 Society for Industrial and Applied Mathematics
Vol. 12, No. 3, pp. 289-297

A 2-APPROXIMATION ALGORITHM FOR THE UNDIRECTED
FEEDBACK VERTEX SET PROBLEM"®

VINEET BAFNAT. PIOTR BERMAN?., AND TOSHIHIRO FUJITO?

Abstract. A feedback vertex set of a graph is a subset of vertices that contains at least one
vertex from every cycle in the graph. The problem considered is that of finding a minimum feedback
vertex set given a weighted and undirected graph. We present a simple and efficient approximation
algorithm with performance ratio of at most 2, improving previous best bounds for either weighted
or unweighted cases of the problem. Any further improvement on this bound, matching the best
constant factor known for the vertex cover problem, is deemed challenging.

The approximation principle, underlying the algorithm, is based on a generalized form of the
classical local ratio theorem, originally developed for approximation of the vertex cover problem, and
a more flexible style of its application.

Bafna, Berman, Fujito, SIAM J. Discrete Math. 12, 289-297 (1999).
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Input: an undirected graph G' = (V. E') with vertex weights w: V — Q_ FEEDBACK
Output: a feedback vertex set F

Initialize F ={uecV : w(u) =0},V =V - F. [i =0]
Cleanup((&)

While V # 0 do It's a local algorlthm,

[i —i+1] recursively removes
If G contains a semidisjoint cycle C, then vertices and then
Let v « mm{w(u) : ue V(C)}. Slmpllfy the graph.

Set w(u) «— w(u) —~v, Yu € V(C).
G = C and wi(u) =7, Yu e V(C)] (vertex chosen

Else |G is clean and contains no semidisjoint cycle] based on current
Let v « min{w(u)/(d(u) —1) : ue V}. degree)_
Set w(u) « w(u) —y(d(u) - 1), Vu e V.
G; = G and wi(u) = y(d(u) — 1), Yu e V]
For each u € V with w(u) =0 do
Remove u from V', add it to F', and push it onto STACK.

Guarantees that the

Cleanup(() : _
While STACK # 0 do size of the FVS is
Let u < pop(STACK). At most two times of
If F — {u} is an FVS in original G, then [u is redundant] The minimum size
Remove u from F. ( so far best guarantee)
Cleanup(G):

While G contains a vertex of degree at most 1, remove it along with
any incident edges.

F1G. 3.1. 2-approximation algorithm FEEDBACK for the FVS problem. 14



In this talk

Minimum FVS as spin-glass

— Define a spin model;

— mean-field theory;

— Message-passing algorithm;

— Application to random
graphs and lattices

We consider mainly undirected graphs in this work
(directed graphs briefly discussed in the end)
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global cycle constraints - local edge constraints

Main observations:

»

Vertex either deleted (belongs to FVS) or remains in
graph.

»
If a vertex remains in graph, it must belong to a tree
component.

»

For a tree component, after assigning one vertex as root,
a parent-child relationship can be defined for any two
neighboring vertices.
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global cycle constraints = local edge constraints

(a) Define an integer state A; for each vertex i
0: vertex i unoccupied (€ FVS)
i: vertex i occupied (¢ FVS)
and is a root of a tree component
A; = j € 0i: vertex i occupied (¢ FVS)
and j is its parent vertex in a tree comp.

A;
A,

]

1
O—> di: the set of neighbors of vertex i
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A graphical representation of states

Closed circle:
open circle:
arrow on edge:

occupied
unoccupied
pointing from child to parent
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global cycle constraints - local edge constraints

(b) Define an edge factor C;; for each edge (i,))

+(5'{\ (]—()‘(,)‘4—()' )-{-()' (I—()“ —()J)

A “%2 z

orA;=k+*j 19



partition function

N

Z(xr) = Z exp [.l' Z(l —_ (S()‘z )U‘,’] H CY,'J'(fl,i. £ J‘)
A

i=1 (i.4)€G

w;: (non-negative) weight of vertex i

Only configurations A = {A,, A4,, ..., Ay} which corresponds to a collection of
disjoint trees and c-trees have non-vanishing contribution to Z(x).

tree:
a connected component with
n vertices and n — 1 edges.

c-tree:
a connected component with
n vertices and n edges
(there is one and only one
ycle).
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belief propagation equations

We want to obtain marginal probabilities for
each vertex.
A

q; . probability of vertex i to have state 4;.
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Single vertex marginal probability:

1 <4 eTwW; [

eTWi H ((1.())_.2 -+ (1_‘;—‘?)
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Belief-propagation (BP) equation:

|

0
Ji—j =
w; 0 k 0 0
1+ e*ti [ [1 ((1A°—i T ‘1A~—~i) + 2 (I=q_;) I (‘Im—; T ‘1:::—1')]
keoi\ j keoi\j meoi\ 1.k
T Wi l_[ ((1() 4+ ql.. )
k—1 k—i
i kedi\j
1 \o
Ji—j =
. _ - 0 k : 0 0
L+ er [ [1 (Gh—i i)+ X A=qi) TT (gm—i+ ‘1:;:—.1')]
kedi\ g keoi\j meadi\ j.k

HJZ: European Physical Journal B (2013)
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Computing thermodynamic quantities

_ 1
Free entropy: ®(x) = ~InZ(x) = N ¢(x)
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Results: |

Ensemble-averaging on Erdos-Renyi random graph
(mean degree ¢ = 10)

Occupation Density

occupation desity entropy density
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Ensemble-averaging on Erdos-Renyi random graph
(mean degree ¢ = 10)

Entropy Density

0.35 040 045 0.50
Occunation Densitv

26



belief propagation-guided decimation

(0). Input a graph G and initialize randomly the edge messages (¢! i qt_ ;) and (q'?_,,-. ([}_,,-) for
each edge (i.j) of the graph . The feedback vertex set I is initialized to be empty. The

re-weighting parameter r is set to an appropriate value.

(1). Perform the BP iteration process a number 7" of rounds (in each round of the iteration, the
vertices of the graph ¢ are randomly ordered and their output messages are then updated).
We then compute the empty probability ¢ of each vertex i of the graph G based on the
current inputting messages to vertex i. Then the fN vertices with the highest empty prob-

ability values are added to the set I', and these vertices are then removed from the graph

together with all the edges attached to them.

(2). Then we further simplify the graph &' by recursively removing vertices of degree 0 or 1 until

all the remaining vertices of the graph have two or more attached edges.

(3). If the graph &' is non-empty, we return back to step (1).

(4). Output the constructed feedback vertex set I'.

27




FVS relative size
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Results: Il

Comparison between theory and algorithms
Erdos-Renyi Random graphs

Erdos-Reny1 random graph

while each point of algorithm is obtained by
averaging over 96 random graphs of size N=100,000.

G--8 FEEDBACK .
6—o BPD (x=12)
3 RS theory
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Mean deeree



FVS relative s

Results: Il

Comparison between theory and algorithms
Regular Random graphs

080F" | T ' T I
" Regular random graph
0.70 f=
- /g/
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0.40
0.30
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Lower-bound: Bau, Wormald, Zhou, 2002 .
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RS theory corresponds to infinitely large system;
while each point of algorithm is obtained by
averaging over 96 random graphs of size
N=100,000.

G--8 FEEDBACK |
6—© BPD (x=7) .
»——¢ RS theory -

4+—+ Lower bound
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Results. IV

Belief-propagation decimation works also good in
regular lattices:

->2D square lattice, 35.2% vertices in constructed FVS
as compared to 50% by FEEDBACK.

This value is close to the rigorous lower-bound 33.3%

= 3D cubic lattice, 42.2% vertices in constructed FVS
as compared to 50% by FEEDBACK.

This value is close to the rigorous lower-bound 40.0%
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Model for FVS of directed graph

12 5 *Height h; of vertex i:
h; =0: [eFVS]
hi > 0: [e FVS]

1

Lucas, Arxiv (2013)

Edge (i — j) constraint:
Ifhl > (0 and h} > 0,
then hi < h]

\'
A Y
-

Z(x) = Zcxp [.1' (1 — (5}32_)11',-] H Ci—j(hi. hj)

h i=1 (i—j)eG 31




FVS relative size
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DFVS: Comparison between theory and algorithms
Erdos-Renyi Random directed graphs
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. Erdos-Renyi random digraph

i RS theory corresponds to infinitely large system;
while each point of algorithm is obtained by

i averaging over 96 random graphs of size N=100,000.
3 5--8 SA -
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EFVS relative size
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DFVS: Comparison between theory and algorithms
Regular Random directed graphs
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Regular random digraph

while each point of algorithm is obtained by

E--8 SA
Gc—o6 BPD (x=50)
»—> RS theory

\®]
S

RS theory corresponds to infinitely large system;

averaging over 96 random graphs of size N=100,000.
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Conclusion

A.Undirected and directed Feedback Vertex Set (FVS)
problem solved by replica-symmetric mean-field theory.

B.Belief propagation-guided decimation (BPD) message-
passing algorithm achieves good performance on random
problem instances.
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On-Going Work:

> Computing the phase diagrams of random graph
ensembles by 1RSB mean-field theory.

> Apply simulated annealing and other local optimization
algorithms to FVS problem.

> Apply the FVS problem to studying the dynamical
property of some processes on complex networks.
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