# ATLAS Run1 Constraints on the Electroweak Sector of SUSY

### Zoltan Gecse University British Columbia



### **EWK Sector of the MSSM**



- The theory naturally yields the correct value of  $\mathbf{M}_{\mathbf{Z}}$  if the individual terms are comparable in magnitude
- If higgsinos are light → charginos and neutralinos expected to be light

### Parameterization of the EWK sector

- The electroweakino sector is parameterized with only 4 parameters
  - M1 (Bino); M2 (Wino); MU (Higgsinos); tanbeta

$$\begin{pmatrix} M_1 & 0 & -c_{\beta} \, s_W \, m_Z & s_{\beta} \, s_W \, m_Z \\ 0 & M_2 & c_{\beta} \, c_W \, m_Z & -s_{\beta} \, c_W \, m_Z \\ -c_{\beta} \, s_W \, m_Z & c_{\beta} \, c_W \, m_Z & 0 & -\mu \\ s_{\beta} \, s_W \, m_Z & -s_{\beta} \, c_W \, m_Z & -\mu & 0 \end{pmatrix} \begin{pmatrix} M_2 & \sqrt{2} s_{\beta} \, m_W \\ \sqrt{2} c_{\beta} \, m_W & \mu \end{pmatrix}$$

**Neutralino Mass matrix** 

**Chargino Mass matrix** 

- The slepton sector is parameterized with only 5 parameters
  - Mass of the LH/RH selectron and smuon
  - Mass of the LH/RH stau and the mixing

$$\mathbf{m}_{\widetilde{\tau}}^{2} = \begin{pmatrix} m_{L_{3}}^{2} + \Delta_{\widetilde{e}_{L}} & v(a_{\tau}^{*}\cos\beta - \mu y_{\tau}\sin\beta) \\ v(a_{\tau}\cos\beta - \mu^{*}y_{\tau}\sin\beta) & m_{\overline{e}_{3}}^{2} + \Delta_{\widetilde{e}_{R}} \end{pmatrix}$$

### Comprehensive Search for EWK SUSY

- If gluinos and squarks are heavy, EWK SUSY can be the dominant SUSY production
  - High discovery potential!
- Complex search including variety of final states and ~100 signal regions

| SUSY scenario                       | LSP          |
|-------------------------------------|--------------|
| RPC production and decay            | N1/Gravitino |
| RPC production and RPV decay        | N1           |
| RPC production and displaced decays | N1           |



| SUSY Process            | Signature                    |  |  |
|-------------------------|------------------------------|--|--|
| Sleptons and sneutrinos | Leptons (+ MET)              |  |  |
| CiCi, CiNi, NiNj        | Gauge, Higgs bosons +<br>MET |  |  |
|                         | Leptons/taus (+ MET)         |  |  |
|                         | Photon+MET                   |  |  |
| _                       | 'disappearing track'         |  |  |

# Simplified Models

- Involve only a few new particles and interactions.
- Small number of parameters directly related to collider physics observables
  - particle masses
  - production cross-sections
  - branching fractions



Results also interpreted in Phenomenological models (pMSSM, GGM, AMSB)

# Searches for Slepton Pair-production



- 2 same flavor e/µ
- Signal and background discrimination based on E<sub>T</sub><sup>miss,rel</sup> and M<sub>T2</sub>

$$m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[ \max \left( m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$$







# Searches for Chargino Pair-production





- 2 hadronically decaying taus
- Signal and background discrimination based on E<sub>T</sub><sup>miss</sup>, M<sub>T2</sub> and jet veto



350

mৣ. [GeV]

### Searches for Chargino-Neutralino Production

- Search in the trilepton final states
  - Search for decays via gauge and higgs boson, light sleptons and staus
  - Dedicated talk by Matthew Gignac



#### 2 hadronically decaying taus





### Searches for Chargino-Neutralino Production

#### Search in the trilepton final states

- Search for decays via gauge and higgs boson, light sleptons and staus
- Dedicated talk by Matthew Gignac





- Search in events
  with one lepton and general
  2 b-jets
  - Background discrimination based on Etmiss, MT, and MCT

$$m_{\text{CT}}^2 = \left(E_{\text{T}}^{b_1} + E_{\text{T}}^{b_2}\right)^2 - \left|\mathbf{p}_{\text{T}}^{b_1} - \mathbf{p}_{\text{T}}^{b_2}\right|^2$$





### Searches for Neutralino Pair-production

- N2N3 production compelling if higgsino like
- Final states with 4 leptons (including hadronically decaying taus) used in the search
  - Signal vs background discrimination based on MET and Z-boson veto







### EWK SUSY with RPV Decays

#### 4L sensitive probe for RPV decays of LSP

Z-veto and Etmiss from neutrinos



# EWK SUSY with Gravitino LSP (I)

4L events with Z boson candidates probing for GGM

scenarios (with Gravitino LSP)





# **EWK SUSY with Gravitino LSP (II)**

 Search in events with 2 photons and large ETmiss







# Summary and Outlook

- EWK SUSY can be the dominant SUSY production at the LHC
- Comprehensive search for EWK SUSY carried out in Run 1 data collected by ATLAS at 8 TeV under the assumptions of neutralino1 or gravitino LSP
- No significant excess is seen
  - Stringent limits set in simplified and phenomenological models
- New regions of parameter phase space will be explored in the ~14 TeV data to be collected starting in 2015

|                         | Model                                                                                                                                                                                                       | $e, \mu, \tau, \gamma$ | Jets       | $m{E}_{ m T}^{ m miss}$ | ∫£ dt[fb | o <sup>-1</sup> ] Mass I                                                                                 | mit         | ·                                                                                                                                                                                                                              | Reference            |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------|-------------------------|----------|----------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| EW<br>direct            | $\tilde{\ell}_{L,R}\tilde{\ell}_{L,R},\tilde{\ell}{ ightarrow}\ell\tilde{\chi}_1^0$                                                                                                                         | $2e,\mu$               | 0          | Yes                     | 20.3     | ℓ 90-32                                                                                                  | GeV         | $m(\tilde{\chi}_1^0)=0$ GeV                                                                                                                                                                                                    | 1403.5294            |
|                         |                                                                                                                                                                                                             | $2e,\mu$               | 0          | Yes                     | 20.3     | $\tilde{\chi}_1^{\pm}$                                                                                   | 140-465 GeV | $m(\widetilde{\mathcal{X}}_{1}^{0})=0$ GeV, $m(\widetilde{\ell},\widetilde{\nu})=0.5(m(\widetilde{\mathcal{X}}_{1}^{\pm})+m(\widetilde{\mathcal{X}}_{1}^{0}))$                                                                 | 1403.5294            |
|                         | $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{\dagger} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu})$                                                                                   | 2 τ                    | -          | Yes                     | 20.7     | $\tilde{\chi}_{1}^{\pm}$ 180-33                                                                          | 0 GeV       | $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\tau},\tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$                                                                                                                    | ATLAS-CONF-2013-028  |
|                         | $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell (\tilde{\gamma} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu)$                          | $3e,\mu$               | 0          | Yes                     | 20.3     | $	ilde{\chi}_1^{\pm}, 	ilde{\chi}_2^0$                                                                   | 700 GeV     | $m(\widetilde{\mathcal{X}}_1^{\pm}) = m(\widetilde{\mathcal{X}}_2^0), \ m(\widetilde{\mathcal{X}}_1^0) = 0, \ m(\widetilde{\ell}, \widetilde{\nu}) = 0.5(m(\widetilde{\mathcal{X}}_1^{\pm}) + m(\widetilde{\mathcal{X}}_1^0))$ | 1402.7029            |
|                         | $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0}$                                                                                                         | 2-3 $e, \mu$           | 0          | Yes                     | 20.3     | $egin{array}{c} 	ilde{\chi}_1^{\pm}, 	ilde{\chi}_2^0 \ 	ilde{\chi}_1^{\pm}, 	ilde{\chi}_2^0 \end{array}$ | 420 GeV     | $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0, \text{ sleptons decoupled}$                                                                                                                               | 1403.5294, 1402.7029 |
|                         | $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0}$<br>$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0}$  | 1 $e, \mu$             | 2 <i>b</i> | Yes                     | 20.3     | $\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{2}^{0}$ 285 G                                                     | eV          | $m(\tilde{\mathcal{X}}_1^\pm) = m(\tilde{\mathcal{X}}_2^0), \; m(\tilde{\mathcal{X}}_1^0) = 0, \; sleptons \; decoupled$                                                                                                       | ATLAS-CONF-2013-093  |
| Long-lived<br>particles | Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^{\pm}$                                                                                                                         | Disapp. trk            | 1 jet      | Yes                     | 20.3     | $\tilde{\chi}_1^{\pm}$ 270 Ge                                                                            | <b>v</b>    | $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=160 \text{ MeV}, \ \tau(\tilde{\chi}_{1}^{\pm})=0.2 \text{ ns}$                                                                                                             | ATLAS-CONF-2013-069  |
|                         | Stable, stopped g R-hadron                                                                                                                                                                                  | 0                      | 1-5 jets   | Yes                     | 22.9     | ğ                                                                                                        | 832 GeV     | $m(\tilde{\chi}_1^0)=100 \text{ GeV}, 10 \ \mu\text{s} < \tau(\tilde{g}) < 1000 \text{ s}$                                                                                                                                     | ATLAS-CONF-2013-057  |
|                         | GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \tilde{\mu})$                                                                                       | $\mu$ ) 1-2 $\mu$      | -          | -                       | 15.9     | ${	ilde \chi}^0_1$                                                                                       | 475 GeV     | 10 <tanβ<50< td=""><td>ATLAS-CONF-2013-058</td></tanβ<50<>                                                                                                                                                                     | ATLAS-CONF-2013-058  |
|                         | GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$ , long-lived $\tilde{\chi}_1^0$                                                                                                                       | 2 γ                    | -          | Yes                     | 4.7      | $\tilde{\chi}_1^0$ 230 GeV                                                                               |             | $0.4 < \tau(\tilde{\chi}_1^0) < 2 \text{ ns}$                                                                                                                                                                                  | 1304.6310            |
|                         | $	ilde{q}	ilde{q},	ilde{\chi}_1^0{ ightarrow}qq\mu$ (RPV)                                                                                                                                                   | 1 $\mu$ , displ. vtx   | -          | -                       | 20.3     | q                                                                                                        | 1.0 TeV     | 1.5 $< c\tau <$ 156 mm, BR( $\mu$ )=1, m( $\tilde{\chi}_1^0$ )=108 GeV                                                                                                                                                         | ATLAS-CONF-2013-092  |
| RPV                     | LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$                                                                                                                             | 2 e,μ                  | -          | -                       | 4.6      | $	ilde{m{ u}}_{	au}$                                                                                     | 1.6         | 1 TeV $\lambda'_{311}$ =0.10, $\lambda_{132}$ =0.05                                                                                                                                                                            | 1212.1272            |
|                         | LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$                                                                                                                       | $1e, \mu + \tau$       | -          | -                       | 4.6      | $	ilde{m{	ilde{ u}}}_{	au}$                                                                              | 1.1 TeV     | $\lambda'_{311} = 0.10, \lambda_{1(2)33} = 0.05$                                                                                                                                                                               | 1212.1272            |
|                         | Bilinear RPV CMSSM                                                                                                                                                                                          | $1e, \mu$              | 7 jets     | Yes                     | 4.7      | $	ilde{q}, 	ilde{g}$                                                                                     | 1.2 TeV     | $m(\tilde{q}) = m(\tilde{g}), \ c\tau_{LSP} < 1 \ mm$                                                                                                                                                                          | ATLAS-CONF-2012-140  |
|                         | $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_{e}$                              | $4e,\mu$               | -          | Yes                     | 20.7     | $	ilde{\mathcal{X}}_1^{\pm}$                                                                             | 760 GeV     | $m(\tilde{\chi}_{1}^{0})>300 \text{ GeV}, \lambda_{121}>0$                                                                                                                                                                     | ATLAS-CONF-2013-036  |
|                         | $\tilde{\chi}_{1}^{\dagger}\tilde{\chi}_{1}^{\dagger}, \tilde{\chi}_{1}^{\dagger} \rightarrow W\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{e}, e \tau \tilde{\nu}_{\tau}$ | $3e, \mu + \tau$       | -          | Yes                     | 20.7     | $\tilde{\chi}_1^{\pm}$ 3                                                                                 | 50 GeV      | $m(\tilde{\chi}_1^0)$ >80 GeV, $\lambda_{133}$ >0                                                                                                                                                                              | ATLAS-CONF-2013-036  |

### Additional Slides

### The ATLAS Detector



- 0.5-1T torroidal magnetic field
- Resistive Plate Chambers &
   Thin Gap Chambers for trigger
- Monitored Drift Tubes &
   Cathode Strip Chambers measure sagitta
- Δp/p 3% @ 100 GeV rising to 10% at 1TeV
- $|\eta| < 2.7$

- Liquid argon electromagnetic calorimeter
- Tile hadronic calorimeter
- $|\eta| < 4.9$
- 9.7 interaction lengths at η=0

### Gravitino as LSP

- GMSB breaks SUSY via intermediate-scale messenger interactions
  - Naturally protects SM flavor symmetry
  - Gravitino is always the LSP
    - very light and non-interacting→harder spectrum (w.r.t. N1 LSP case)
    - NLSP can be N1, taus, sleptons
      - decays always to Gravitino + SM
      - Its nature determines the signatures
      - Can be long-lived (focus on prompt in this talk)
- General Gauge Mediation (GGM) :
  - No specific SUSY mass hierarchy for (un)colored states
  - neutralino's nature depends on: M1, M2, μ, tan(β)