Toward pump-probe experiments of defect dynamics with pulsed ion beams

Peter Seidl, Accelerator and Fusion Research Division, LBNL
Hua Guo1, Peter Hosemann1,2, Andrew Minor1,2, Arun Persaud1, Thomas Schenkel1, William Waldron1, John Barnard3

1LBNL and 2Univ. of California, Berkeley, 3LLNL

June 19, 2014

We have formed \(~16\) ns long pulses with peak currents up to \(1\) A, \((r \approx 5\) mm\) with Lithium ions, and have begun experiments with \(K^+\) ions.

We are preparing shorter pulses (\(~1\) ns) and smaller focal spots \(30\)-nC bunches.

Such pulses can give access to defect dynamics on a 1 to 600 ns times scale.

NDCX-II is a unique facility for discovery science with intense, pulsed ion beams

Our goals:
- Short, intense ion pulses for isochoric heating of solids to Warm Dense Matter states
- Access to defect dynamics in pump-probe type experiments with ion beam as pump
- With NDCX-II we can access to the physics of very intense ion beams and non-neutral plasmas. Relevant to accelerator physics and fusion research

Beam parameters
- Pulse length 0.6 ns (currently ~20 ns) with 2 shots/min.
- ~10 to 50 nC (3x10^{11} ions/pulse)
- Beam spot r ~1 mm (currently ~5 mm)
- 1.2 - 3 MeV (currently 0.3 MeV)
- Ions: Li, K... (He, other noble gases in progress)

NDCX-II provides uniquely intense, short ion pulses with high reproducibility and tunability

Nano-second ion pulses ("pump")

Lower intensities:
defect dynamics in materials

- isolated cascades
- overlapping cascades

Higher intensities:
Warm Dense Matter, isochoric heating

- amorphization and melting
- warm (~1 eV), dense matter

1-30 nC, 0.3 MeV, ~10 mm², ~20 ns

~40 nC, 1.2 MeV, ~1 mm², ~1 ns

Ions deposit energy via elastic and inelastic collisions with target electrons and nuclei. Ions can couple to atoms directly via elastic collisions, complementary to laser heating.
With ion pump-probe experiments we can access the dynamics of radiation induced damage in materials from ps to second time scales and nm to \(\sim \mu \text{m} \) length scales.

Understanding the multi-scale dynamics of radiation induced defects is of fundamental interest and it is important to benchmark simulations codes and to **engineer fusion materials for the burning plasma era**.
NDCX-II has 27 cells (7 powered now, 12 soon), a neutralized drift section, a final focus lens, and a target chamber.

- Modified ATA induction cells with pulsed 2.5 T solenoids
- Li$^+$ K$^+$ ion injector
- Long-pulse voltage sources
- 12 active cells
- Oil-filled ATA transmission lines
- ATA Blumlein voltage sources
- Final focus solenoid and target chamber
- Neutralized drift compression line
- Plasma sources (for space-charge neutralization)
The ion source and injector supplies a ~ 1 μs beam to the front end of the accelerator

Extraction from a hot-plate (thermionic) 11-cm diameter emitter at 1000-1250C.
Eg: 50 mA Li⁺, 40 mA K⁺ at 135 kV.
Induction accelerator: A non-resonant (low-Q) structure in which the acceleration field is established by a high voltage pulse across the gap. The induction core presents a high impedance to prevent the pulser from seeing a short circuit. Have high (>20%) electrical efficiency at high I_{beam} (>100 A)

- Gap voltage and the pulse duration are related to the magnetic flux swing via Faraday’s law:
 \[\Delta B \cdot A = \Delta V \cdot \Delta t. \]
- NDCX-II cells: “Compression cells” are shaped 30–90 kV and the ramp duration is 300–700 ns. Followed by 200 kV, 70 ns Blumlein driven cells.

Focusing: $B_{\text{solenoid}} = 3\, \text{T}, L_{\text{eff}} = 19\, \text{cm}, R_{\text{ap}} \approx 4\, \text{cm}$, pulsed, 2/min, $d I_c = 7.7\, \text{kA}$.

![Diagram of induction cell](image)
A variety of acceleration waveforms accelerate and bunch the beam

(i) ‘Pre-bunching’

(ii) Boost energy

(iii) Final buncher

250 kV “flat-top”

200 kV “tilt”

“shaped” for initial bunch compression (800 ns to ≈70 ns)

“shaped” to equalize beam energy after injection

Tailored waveforms in our models use measured shapes for both long-pulse (moderate-voltage) or short-pulse (high-voltage Blumleins)
Beam compression from ~600 ns to 100, 50, and 16 ns

Beam diagnostics:
- Faraday cups
- Inductive current monitors (inactive acceleration cells)
- Capacitive beam position monitors
- Scintillator and II-CCD camera (~ns)

12 nC in 68 ns (FWHM)

single ion pulse compressed to 16 ns (FWHM)

(Li⁺, 280 keV, 25 nC)
The ion beam is reproducible in time and space

Transverse jitter: \(\sigma_x < 0.1 \text{ mm} \)
Intensity jitter < 5%

Repeated pulses

Beam c.m., fwhm
NDCX-II enables studying WDM, material defects and fundamental driver beam questions.
Control dose rate over six orders of magnitude through control of charge/pulse, pulse length and spot size.
New results: defect dynamics in materials, Schenkel et al., NIM B 2014.

<table>
<thead>
<tr>
<th></th>
<th>Now</th>
<th>Goal (y1)</th>
<th>Goal (y2+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion species</td>
<td>Li⁺ (A=7)</td>
<td>new: K⁺ (space charge limited)</td>
<td>also exploring Na⁺,…</td>
</tr>
<tr>
<td>Total charge / pulse (nC)</td>
<td>25 2x10¹¹</td>
<td>30 2x10¹¹</td>
<td>50</td>
</tr>
<tr>
<td># ions / pulse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ion kinetic energy (MeV)</td>
<td>0.3</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Focal radius (50% of beam) (mm)</td>
<td>~10</td>
<td>~2</td>
<td><1</td>
</tr>
<tr>
<td>Pulse duration (FWHM, ns)</td>
<td>20 - ~600</td>
<td>2 - ~600</td>
<td><1</td>
</tr>
<tr>
<td>Peak current (A)</td>
<td>0.8</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>Peak fluence (time integrated) (J/cm²)</td>
<td>~0.01</td>
<td>0.5 - 1</td>
<td>5-10</td>
</tr>
</tbody>
</table>

In 2014: increasing the operating energy and focal spot intensity.

Motivation: Gain in-situ access to the relaxation dynamics of radiation induced defects

Multi-scale problem -- picoseconds to years
Most defects are created and self anneal within tens of picoseconds
Important for better understanding of materials, e.g. verification of theoretical models and simulations

A pump-probe experiment can be sensitive to these time constants.

“Radiation damage spans from the atomic (nanometer, picosecond) to the macroscopic (meter, year) length and time scales.

Critical processes involving individual point-defect migration are difficult to observe experimentally.

Molecular dynamics (MD) simulations are widely used for simulating defect production.”
Measurement of channeled ions allows using the ion beam pump as its own probe for in-situ, single shot experiments.

Through a thin crystalline target, channeled ions are transmitted. However, loss due to damage build-up occurs.

![Diagram showing current vs. time through a crystalline target with channeled ions and loss due to damage build-up](image)
Considerations for using channeling as a sensitive probe for overlapping damage cascades

Intensity of the beam needs to be high enough for overlapping damage cascades

Good time resolution

Beam properties need to be well understood (angular distribution, energy spread, ...)

Only measure channeled ions
After bombarding with a few shots, ex-situ SIMS profiles show a dependence of the Li deposition range with the fluence

“Coasting beam” – 135 keV, ~600 ns.
“Bunched beam” – 250-300 keV, 16-50 ns.

Convoluted with beam properties, such as angular dependence over time of the beam pulse, $n(\theta, t)$
In-situ, channeling was apparent with the Li beam, but a change in the waveform shape was not detected.
A potassium (K+) beam is expected to create more damage due to higher nuclear stopping.

K+, 135 keV, Si 250 nm

For the bunched beam we have $Q(0^\circ)/Q(8^\circ) \approx 3$

Data analysis ongoing
Experiments recording luminescence using a fast camera and a streak camera are being prepared.

Streak camera coupled to a spectrometer grating
→ ps resolution

Enables study of target materials with fast optical centers.

II-CCD camera with 2 ns exposure time directly images beam distribution

We are considering:
• Ionoluminescence
• X-ray probes
• electrons
Double pulses with adjustable delay can be tailored for separating the pump and the probe.

We are beginning to explore this capability.
We are adding components to extend to higher energy, smaller focal spots, shorter pulse duration

Total charge/pulse: 30-50 nC
Beam energy: 1.2 MeV
Pulse width: 1 ns
Spot size: 1-2 mm

Neutralized drift compression will give access to beam-plasma experiments. Higher intensity and energy will allow a wider range of defect dynamics studies and then to warm dense matter (1 eV) experiments.
Summary:

Unique high-intensity beam facility
Allows access to defect dynamics using pump-probe type experiments

Outlook:

Higher energy, shorter pulses, and smaller beam spots
Wider range of target materials with new diagnostics

We welcome collaborations. Come visit us!