Search for the Standard Model Higgs boson in the associated production channel $t\bar{t}H \rightarrow 4\ell$ with the ATLAS detector

David A. DeMarco

¹University of Toronto

June 17, 2014

CAP Congress 2014 Laurentian University - Sudbury, Ontario

UNIVERSITY OF TORONTO

Introduction: $t\bar{t}H$ analyses

- Higgs boson studies are on-going, with significant effort continuing into measurements of its couplings to SM particles
 - $\bullet\,$ Latest results agree with SM spin/parity prediction of 0^+
 - Initial coupling measurements do not show significant deviation from SM expectations
- Studies of $t\bar{t}H$ associated production offer direct probe of the Higgs-top quark coupling
- Current analysis of the 8 TeV dataset with the $t\bar{t}H
 ightarrow 4\ell$ final state is presented here
- In collaboration with other multilepton final states, looking to place an optimal limit on the $t\bar{t}H$ cross-section
- Brief comments on extending this analysis to LHC Run 2 data are also given

$t\bar{t}H \rightarrow 4\ell$ signature

- The final state signature for the 4ℓ analysis includes:
 - 4 light charged leptons (e or μ)
 - Total charge of the leptons is zero
 - 2 b-quark jets
 - Possibly additional jets from radiation
 - Missing energy from leptonic decay of W bosons
- Requiring this signature allows sensitivity to 3 Higgs boson decay modes through various combinations of leptonic decays
 - ${f H} o {f W}^+ {f W}^-$, ${f H} o {ar au}^+ {ar au}^-$ and ${f H} o {f Z} {f Z}$
- In the $H \rightarrow ZZ$ case, additional hadronic decays of the intermediate particles may result in a higher jet multiplicity

Background composition

The major background sources for the 4ℓ channel include:

- $t\bar{t}Z/\gamma^*$
 - $\bullet~\sim75\%$ of total background
- Diboson ZZ(+ jets)
 - $\bullet~\sim 9\%$ of total background
- Single top tZ
 - $\bullet~\sim 9\%$ of total background
- Small contributions from other Higgs production modes (ggF $H \rightarrow ZZ \rightarrow 4\ell$)
 - $\sim 2\%$
 - Can validate against other analyses
- Background from fake lepton objects
 - $\sim 2\%$
 - $t\bar{t}$ +jets, Z+jets, WZ
 - Data-driven estimates

Background suppression: jet multiplicities

- Expected spectra for both the jet multiplicity and the number of b-jets differs between signal and the major backgrounds
 - Plots drawn at preselection, prior to signal region event selection
 - $\bullet\,$ Signal expectation scaled $\times 5$
- Diboson background peaks at low jet multiplicity
- $t\bar{t}Z/\gamma^*$ background on top of signal
- Cuts: \geq 2 jets, \geq 1 b-jet

Background suppression: Z-veto

- Number of Z-boson candidate lepton pairs $N_{\rm recoZ}$ computed as number of opposite sign-same flavour lepton pairs within 10 GeV of Z mass (91 GeV)
 - Largest portions of leading backgrounds in $N_{
 m recoZ}=1~(t\bar{t}Z)$ and $N_{
 m recoZ}=2~(ZZ)$ bins
- Remaining background events from off-shell Z and γ^* continuum
- Effect on total signal is small due to comparatively low branching ratio of $H \rightarrow ZZ$
- Cut: require exactly 0 reconstructed Z-candidate lepton pairs (Z-veto)

Background suppression: $M_{4\ell}$ window

- Note the Z-mass resonance in the $M_{4\ell}$ spectrum from $ZZ^{(*)}$ events from on-shell $Z \to \ell^+ \ell^-$ where one lepton radiates an off-shell boson $Z^*/\gamma^* \to \ell^+ \ell^-$
- There is also high-mass discrimination between signal and background
- Cut: Require $100 < M_{4\ell} < 500$ GeV

Data-driven estimation of fake lepton background

Data-driven technique employed to estimate contribution from fake leptons (Z+jets, $t\bar{t}$):

- Data estimate in control region (3 good leptons + 1 anti-lepton w. reversed selection)
 - Non-isolated electron objects
 - Reversed p_T cut for non-prompt muon objects
- Extrapolate to SR using fake factor related to probability of loose lepton passing good lepton selection

$$N_{4\ell} = \epsilon_{\mathrm{fake}} \times N_{3\ell+1\mathrm{fake}} = \epsilon_{\mathrm{fake}}^2 \times N_{2\ell+2\mathrm{fake}}$$

- ϵ factor taken from CRs well-separated from SR \rightarrow working with 3 ℓ analysis
- Current estimate order of magnitude smaller than signal
- Outstanding issues:
 - data-statistics limited \rightarrow using $2\ell+2{\rm fake}~{\sf CRs}$
 - Closure testing on ϵ factors with MC

	tīH	Sum Bkg.	tīV	tŦWW	$t\overline{t}/t + X$	tΖ	VV	H(ggF)
Preselection	0.48 ± 0.01	220 ± 1	4.77 ± 0.05	0.027 ± 0.003	0.21 ± 0.06	0.60 ± 0.03	209 ± 1	4.63 ± 0.06
Lepton p_T cuts	0.48 ± 0.01	219 ± 1	4.77 ± 0.05	0.027 ± 0.003	0.20 ± 0.05	0.60 ± 0.03	208 ± 1	4.61 ± 0.06
$M_{\ell\ell}^{xy} > 10 \text{ GeV}$	0.47 ± 0.01	197 ± 1	4.61 ± 0.05	0.027 ± 0.003	0.17 ± 0.05	0.58 ± 0.03	188 ± 1	4.26 ± 0.06
$N_{\rm jets} \ge 2$	0.39 ± 0.01	20.3 ± 0.2	3.69 ± 0.05	0.021 ± 0.002	0.07 ± 0.03	0.34 ± 0.02	15.6 ± 0.2	0.55 ± 0.02
Z-Veto	0.27 ± 0.01	2.04 ± 0.06	0.59 ± 0.02	0.017 ± 0.002	0.05 ± 0.03	0.06 ± 0.01	1.14 ± 0.05	0.18 ± 0.01
$N_{ m b-jets} \ge 1$	0.22 ± 0.01	0.70 ± 0.03	0.50 ± 0.02	0.012 ± 0.002	0.02 ± 0.02	0.05 ± 0.01	0.11 ± 0.02	0.013 ± 0.003
$100 < M_{4\ell} < 500 \; { m GeV}$	0.21 ± 0.01	0.59 ± 0.03	0.44 ± 0.02	0.009 ± 0.002	0.02 ± 0.02	0.05 ± 0.01	0.054 ± 0.011	0.013 ± 0.003

• Preselection includes:

- Optimized object selections
- 4 charged leptons, $Q_{total} == 0$
- At least 1 trigger-matched lepton
- Lepton p_T cuts: $p_T^0 > 25$ GeV, $p_T^1 > 15$ GeV
- $M^{xy}_{\ell\ell} > 10$ GeV cut applied on OS-SF pairs ightarrow suppress Drell-Yan process

Note:

- Improvements:
 - Total signal cut by about 55%
 - Upwards of 99% of background events cut
- $\frac{s}{B} \approx 0.36$, clean channel
- Preliminary expected limit: $\sigma/\sigma_{\rm SM} \approx 12.5$

Signal region distributions

David A. DeMarco (U. of Toronto)

ZZ validation region

- Orthogonal validation region
 - $N_{\rm recoZ} == 2$
 - Reversed jet multiplicity cuts $(N_{\rm jet} \leq 2, \text{ no b-jets})$
 - No $M_{4\ell}$ cut applied
- Data/MC agreement gives confidence in ZZ estimate in SR
- Consider use as normalization

David A. DeMarco (U. of Toronto)

ATLAS work in progress

L dt = 20.2 fb⁻, fa=8 Te

zz

Non-ZZ Diboson tfH
 Data

Possible improvements and prospects for $t\bar{t}H \rightarrow 4\ell$ @ 13 TeV

A number of remaining items:

- Finalize MC bkg. estimates (CR normalizations) and fake bkg. estimates
- Fully consider systematics, perform combination and set a limit on the cross-section with the related analyses
 - Related channels: $2\ell_{\rm (SS)}$, $2\ell_{\rm (SS)}+ au$, 3ℓ and $\ell+2 au$

Significant improvements are expected with Run 2 data

- Increased CoM energy to 13 TeV \rightarrow factor of 5 in cross-section of $t\bar{t}H$ prod.
- Increased luminosity \rightarrow aim: 40-45 fb⁻¹ of data per year
- Can expect a very sensitive analyses with full Run 2 data

Additional ideas for Run 2 analysis include:

- Loosened object selections, re-optimization $(H \rightarrow 4\ell \text{ analysis})$
- $\bullet\,$ Inclusion of hadronic $\tau\,$ decays to increase event acceptance
- Application of multivariate analysis scheme for better selection efficiency

Back-up Slides

Back-up

The ATLAS detector

Back-up

$t\bar{t}H \rightarrow 4\ell$ signature

- $\bullet\,$ The final state signature for the 4ℓ analysis includes:
 - 4 light charged leptons (e or μ)
 - Total charge of the leptons is zero
 - 2 b-quark jets
 - Possibly additional jets from radiation
 - Missing energy from leptonic decay of W bosons
- Requiring this signature allows three Higgs boson decays to be combined in order to increase statistics
 - $H \rightarrow W^+W^-$: In this case, all W's (from the Higgs as well as the top quarks) are required to decay leptonically, $W^{\pm} \rightarrow \ell^{\pm} \nu$
 - $\mathbf{H} \to \tau^+ \tau^-$: Here the charged leptons come from leptonic W decays and the leptonic decays $\tau^{\pm} \to \nu_{\tau} (W^{\pm} \to \ell^{\pm} \nu)$
 - **H** \rightarrow **ZZ**: The 4 charged leptons may come from a combination of leptonic decays of the top quark *W*'s and *Z* $\rightarrow \ell^+ \ell^-$ decays
- In the $H \rightarrow ZZ$ case, additional hadronic decays of the intermediate particles may result in a higher jet multiplicity

Back-up

Signal region definition

Cut	Requirement	Motivation
Lepton p_T	$p_T^0>25$ GeV, $p_T^1>15$ GeV	Prompt leptons from signal event
$M_{\ell\ell}^{xy}$ min.	$M_{\ell\ell}^{xy} > 10~{ m GeV}$ for any OS-SF lepton pair xy	Discriminate against soft leptons from Drell-Yan radiation
Number of jets	$N_{ m jets} \geq 2$	Minimum jet multiplicity for signal, allowing for additional jets
Number of b-jets	$N_{ m b-jets} \geq 1$	Require 1 b-tag, allow for missed tag on second expected b-jet
Z-veto	If $81 < M_{\ell\ell}^{xy} < 101$ for any OS-SF lepton pair xy , remove event	Discriminate against dominant backgrounds containing Z-bosons
$M_{4\ell}$ window	$100 < \textit{M}_{4\ell} < 500 \text{ GeV}$	Minimum removes Z peak, exploits high-mass spectrum differences