2014 CAP Congress

Experimental Update of the TIGRESS HPGe Clover Array

Philip J. Voss Simon Fraser University

On behalf of the TIGRESS Collaboration Tuesday, June 17th 2014

- п How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
- $\mathcal{L}_{\mathcal{A}}$ What mechanisms underlie the diversity and evolution of nuclear shape deformation?
- $\mathcal{L}_{\mathcal{A}}$ What are the most accurate theoretical models for explaining these properties "globally"?

- How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
	- Spatial decoupling of nucleons from core: **halo nuclei**.

- \blacksquare How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
	- \blacksquare Spatial decoupling of nucleons from core: **halo nuclei**.
	- \blacksquare **Emergence** of new magic numbers and **disappearance** of traditional ones.

- $\mathcal{L}_{\mathcal{A}}$ How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
- \blacksquare What mechanisms underlie the diversity and evolution of nuclear shape deformation?
- $\mathcal{L}_{\mathcal{A}}$ What are the most accurate theoretical models for explaining these properties "globally"?

- U, How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
- What mechanisms underlie the diversity and evolution of nuclear shape deformation?
- $\mathcal{L}_{\mathcal{A}}$ What are the most accurate theoretical models for explaining these properties "globally"?

Major Questions: Shape Evolution Along the *N=Z* **Line**

- $\mathcal{L}_{\mathcal{A}}$ How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
- \blacksquare What mechanisms underlie the diversity and evolution of nuclear shape deformation?
	- Cooperative effects along *N=Z* line from simultaneous filling of orbitals: **shape evolution.**

Major Questions: Shape Coexistence Along the *N=Z* **Line**

- I. How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
- \blacksquare What mechanisms underlie the diversity and evolution of nuclear shape deformation?
	- Cooperative effects along *N=Z* line from simultaneous filling of orbitals: **shape evolution.**
	- Nearly degenerate shell gaps for positive and negative deformation: **shape coexistence.**

- $\mathcal{L}_{\mathcal{A}}$ How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
- $\mathcal{L}_{\mathcal{A}}$ What mechanisms underlie the diversity and evolution of nuclear shape deformation?
- п What are the most accurate theoretical models for explaining these properties "globally"?

- $\mathcal{L}_{\mathcal{A}}$ How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
- $\mathcal{L}_{\mathcal{A}}$ What mechanisms underlie the diversity and evolution of nuclear shape deformation?
- What are the most accurate theoretical models for explaining these properties "globally"?
	- No-core Shell Model *ab initio* approaches: **light atomic nuclei (A<20).**

- $\mathcal{L}_{\mathcal{A}}$ How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
- $\mathcal{L}_{\mathcal{A}}$ What mechanisms underlie the diversity and evolution of nuclear shape deformation?
- What are the most accurate theoretical models for explaining these properties "globally"?
	- No-core Shell Model *ab initio* ⁺ Continuum (?) approaches: **light atomic nuclei (A<20).**

- $\mathcal{L}_{\mathcal{A}}$ How does an increasing exotic proton-neutron ratio impact the evolution of nuclear structure?
- $\mathcal{L}_{\mathcal{A}}$ What mechanisms underlie the diversity and evolution of nuclear shape deformation?
- What are the most accurate theoretical models for explaining these properties "globally"?
	- Model space truncations and approximations in HFB/SM: **medium mass nuclei.**

The Importance of Gamma-Ray Spectroscopy

Studies at the extreme limits of nuclear existence require radioactive beamfacilities capable of delivering intense and pure beams of nuclear species.

- \blacksquare Reactions require high energy beams (∼0.1c) → Doppler reconstruction
requires photon detector **segmentation** and **charged particle detection** requires photon detector **segmentation** and **charged particle detection**.
- $\mathcal{L}_{\mathcal{A}}$ ■ Inherent low intensities \rightarrow Need high photon detection **efficiency** and
reaction channel selectivity to improve the signal of weak channels **reaction channel selectivity** to improve the signal of weak channels.
- $\mathcal{L}_{\mathcal{A}}$ ■ Ideal detection system \rightarrow Suppressed HP segmented germanium clover
array + ancillary particle detection array ⁺ ancillary particle detection.

The Importance of Gamma-Ray Spectroscopy

Studies at the extreme limits of nuclear existence require radioactive beamfacilities capable of delivering intense and pure beams of nuclear species.

- \blacksquare Reactions require high energy beams (∼0.1c) → Doppler reconstruction
requires photon detector **segmentation** and **charged particle detection** requires photon detector **segmentation** and **charged particle detection**.
- \blacksquare ■ Inherent low intensities → Need high photon detection **efficiency** and
reaction channel selectivity to improve the signal of weak channels **reaction channel selectivity** to improve the signal of weak channels.
- $\mathcal{L}_{\mathcal{A}}$ ■ Ideal detection system \rightarrow Suppressed HP segmented germanium clover
array + ancillary particle detection array ⁺ ancillary particle detection.

The Importance of Gamma-Ray Spectroscopy

Studies at the extreme limits of nuclear existence require radioactive beamfacilities capable of delivering intense and pure beams of nuclear species.

- \blacksquare Reactions require high energy beams (∼0.1c) → Doppler reconstruction
requires photon detector **segmentation** and **charged particle detection** requires photon detector **segmentation** and **charged particle detection**.
- \blacksquare ■ Inherent low intensities → Need high photon detection **efficiency** and
reaction channel selectivity to improve the signal of weak channels **reaction channel selectivity** to improve the signal of weak channels.
- \blacksquare ■ Ideal detection system → Suppressed HP segmented germanium clover
array + ancillary particle detection array ⁺ ancillary particle detection.

- TIGRESS is an array of ¹⁶ high-purity germanium clover detectors with 32-fold segmentation per clover for enhanced position resolution.
- The array is fully instrumented with fast digital electronics and reconfigurable BGO suppressors to meet ^a variety of experimental needs.

TRIUMF: Canada's National Nuc. and Part. Physics Laboratory

SHARC: Silicon Highly-Segmented Array for Reactions & Coulex

All SHARC figures and plots without credit courtesy of Peter Bender and Steffen Cruz, UBC and TRIUMF

- SHARC is ^a high-resolution silicon barrel array well-suited for **transfer reaction studies** with TIGRESS to probe the evolution of single particle structure.
- п Recently used for low-lying excited state occupation studies in ⁹⁵Sr. Part of campaign to study *Z=40*, *N=60* shape-transition region (around Zr, Sr, Mo radioisotopes).
- ш Sudden change in radius due to competing deformations?

J. Xiang, Nucl. Phys. **A873**, 1 (2012).

- SHARC is ^a high-resolution silicon barrel array well-suited for **transfer reaction studies** with TIGRESS to probe the evolution of single particle structure.
- \blacksquare Recently used for low-lying excited state occupation studies in ⁹⁵Sr. Part of campaign to study *Z=40*, *N=60* shape-transition region (around Zr, Sr, Mo radioisotopes).
- ш ■ Dramatic change in *E*(2⁺) is indicative of shape change.

K. Heyde, J.L. Wood, Rev. Mod. Phys. **83**, 1467 (2011).

- 4+ 1793 $0+1229$ 434 2^{+} 815 215 $J\overline{5}7$ 0^+ 196 $\frac{96}{38}$ Sr₅₈ 38Sr
- SHARC is ^a high-resolution silicon barrel array well-suited for **transfer reaction studies** with TIGRESS to probe the evolution of single particle structure.
- \blacksquare Recently used for low-lying excited state occupation studies in ⁹⁵Sr. Part of campaign to study *Z=40*, *N=60* shape-transition region (around Zr, Sr, Mo radioisotopes).
- ш ■ Strong *E0* transitions are a fingerprint of shape mixing.

- **= SHARC is a high-resolutior10am Fuesday, welne 47** for transfer reaction studies with TIGBESS14 probe the evolution of single particle structure.
- $\mathcal{L}_{\mathcal{A}}$ Recently used for low-lying excited state occupation studies in ⁹⁵Sr. Part of campaign to study *Z=40*, *N=60* shape-transition region (around Zr, Sr, Mo radioisotopes).
- $\mathcal{L}_{\mathcal{A}}$ ■ Strong *E0* transitions are a fingerprint of shape mixing.

Cannot resolve excited states by proton spectroscopy alone!

TIGRESS summed gamma-ray spectrum. Doppler-corrected and gated on transfer protons. Evidence for the direct population of at least five excited states in ⁹⁵Sr.

Philip J. Voss2014 CAP

- The analysis is in progress; cross sections, angular distributions, and level occupancies will be extracted.
- Continuation of the program with $95Sr(d,p)$ ⁹⁶Sr measurement this month.

The SHARC Collaboration: Shape Coexistence in Sr Isotopes

R. Krücken, K. Wimmer, P. C. Bender, F. Ames, C. Andreoiu, G. C. Ball, C. S. Bancroft, R. Braid, T. Bruhn, W. Catford, D. S. Cross,C. A. Diget, T. Drake, A. Knapton, K. Kuhn, A. B. Garnsworthy, G. Hackman, J. Lassen, R. Laxdal, M. Marchetto, A. Matta, D. Miller, M. Moukaddam, N. Orr, A. Sanetullaev, C. E. Svensson, C. Unsworth, P. Voss

- \blacksquare SPICE provides ^a means for *E0* transition rate studies via **internal conversionelectron spectroscopy** in coincidence with gamma-rays and scattered projectiles.
- \blacksquare *E0* transition rates provide additional information on nuclear structure, inparticular **shape coexistence** and **mixing** of nearly-degenerate ⁰⁺ excited states.

$$
\rho = \frac{\langle \phi_i | M(E0) | \phi_f \rangle}{eR^2} \simeq \frac{\alpha \beta \Delta \langle r^2 \rangle}{eR^2}
$$

 \blacksquare **Measuring the transition rate gives access to the mixing amplitudes** α **and** β between the initial and final states, given knowledge of their deformation $(\Delta \langle r^2 \rangle)$.

- 1) Vacuum Vessel
2) Silicon (Li Drifte
- Silicon (Li Drifted) Detector
- 3) Tantalum Photon Shield
4) NdFeB Magnetic Lens
- 4) NdFeB Magnetic Lens
5) 7 Position Target Whe
- 5) 7 Position Target Wheel
6) Silicon DSSD
- 6) Silicon DSSD
7) TIGRESS Clov
- 7) TIGRESS Clover (12 Total)

Figures courtesy of Mohamad Moukaddam, TRIUMF

- 1) Vacuum Vessel
2) Silicon (Li Drifte
- Silicon (Li Drifted) Detector
- 3) Tantalum Photon Shield
- 4) NdFeB Magnetic Lens
5) 7 Position Target Whe
- 5) 7 Position Target Wheel
6) Silicon DSSD
- 6) Silicon DSSD
- 7) TIGRESS Clover (12 Total)

Figures courtesy of Mohamad Moukaddam, TRIUMF

The SPICE Collaboration:

L.J.Evitts, A.B.Garnsworthy, S.Ketelhut, C.Bolton, J.Witmer, G.C.Ball, R.Churchman, M.Constable, G.Hackman, R.Henderson, L.Kurchaninov, P.C.Bender, A.Knapton, W.Korten, R.Krücken, D.Miller, W.J.Mills, M.M.Rajabali, C.Unsworth, C.E.Svensson, E.T.Rand, R.Dunlop, V.Bildstein, G.A.Demand, G.Deng, M.Dunlop, A.Finlay, P.E.Garrett, B.Hadinia, B.Jigmeddorj, A.T.Laffoley, A.Diaz Varela, J.Wong, C. Andreoiu, P. Voss

- 1) Vacuum Vessel
- 2) Silicon (Li Drifted) Detector
- 3) Tantalum Photon Shield
- 4) NdFeB Magnetic Lens
- 5) 7 Position Target Wheel
- 6) Silicon DSSD
- 7) TIGRESS Clover (12 Total) **"First in-beam test of SPICE"**

(7) **Mohamad Moukaddam, TRIUMF**⁶⁾

gamma

ion

electron

beam direction

Figures courtesy of Mohamad Moukadda

2:30pm Tuesday, June 17

The SPICE C203 **Constraints** L.J.Evitts, A.B.Garnsworthy, S.Ketelhut, C.Bolton, J.Witmer, G.C.Ball, R.Churchman, M.Constable, G.Hackman, R.Henderson, L.Kurchaninov, P.C.Bender, A.Knapton, W.Korten, R.Krücken, D.Miller, W.J.Mills, M.M.Rajabali, C.Unsworth, C.E.Svensson, E.T.Rand, R.Dunlop, V.Bildstein, G.A.Demand, G.Deng, M.Dunlop, A.Finlay, P.E.Garrett, B.Hadinia, B.Jigmeddorj, A.T.Laffoley, A.Diaz Varela, J.Wong, C. Andreoiu, P. Voss

Electromagnetic Transition Rate Measurements

Electromagnetic transition rate measurements provide ^a probe of nuclear structure:

- \blacksquare Lend **experimental** insight into the evolution of nuclear structure.
- \blacksquare **F** Provide a sensitive benchmark for advanced **theoretical models**.

Lifetime Measurements

 $\frac{1}{\tau(E2; 2^+_1 \rightarrow 0^+_{gs})} \propto E(2^+_1)^5 B(E2; 2^+_1 \rightarrow 0^+_{gs})$
 $P_{0^+_1 \rightarrow 2^+_1} \propto B(E2; 0^+_1 \rightarrow 2^+_2)[1 + \alpha Q(2^+_1)]$

 $B(E2; I_i \rightarrow I_f) = \frac{1}{2J_i + 1} \langle I_f ||E2||I_i \rangle^2 \propto \beta^2$
 $Q(2^+) \propto \langle 2^+ ||E2||2^+ \rangle \propto \beta$

Coulomb Excitation

Electromagnetic Transition Rate Measurements

^A powerful technique: Simultaneous measurement of lifetimes and excitation probabilities to probe quadrupole deformation with the same setup tominimize systematic uncertainties!

Bambino for Coulomb Excitation: ¹⁹⁶Pt(¹¹Be, ¹¹Be*) ¹⁹⁶Pt*

Neutron-rich ¹¹Be provides ^a complex testing ground for *ab initio* theoretical models:

- ■ Has largest *E1* transition strength (~3 W.U.) between bound states of nuclear chart.
- \blacksquare ■ Decoupling phenomena (¹⁰Be + n) → **one-neutron halo** nucleus.
■ Ground state has **inverted parity** (1⁄4+) → unnaired neutron shou
- \blacksquare ■ Ground state has **inverted parity** (½⁺) → unpaired neutron should fill the 1p_{1/2} orbital.
■ Lis **weakly bound** with only one excited state
- \blacksquare **IF Allee Example 3 Is weakly bound** with only one excited state.

Table courtesy of Greg Hackman, TRIUMF

Scattered 11 Be energy spectrum in Bambino in coincidence with gamma-ray energy spectra in TIGRESS in the laboratory (solid) and projectile (dashed) frames.

Comparison of experimental (closed) to calculatedyields (open) in six different angular regions.

 $B(E1) = 0.102(2)$ e²fm² (Gosia) and $0.098(4)$ e^{2} fm 2 (FRESCO); results in uncertainties < ⁵ %!

S. Quaglioni et al., PRL **101**, 092501 (2008).

With TIGRESS coupled to Bambino, precision transition rate studies provide extremely sensitive tests of state-of-the-art theoretical models like **NCSM+Continuum+NNN**.

Precision measurement of the electromagnetic dipole strengths in ¹¹Be

E. Kwan^{a,*,1}, C.Y. Wu^{a,*}, N.C. Summers^a, G. Hackman^b, T.E. Drake^c, C. Andreoiu^d, R. Ashley^d, G.C. Ball^b, P.C. Bender^b, A.J. Boston^e, H.C. Boston^e, A. Chester^d, A. Close^b, D. Cline^f, D.S. Cross^d, R. Dunlop^g, A. Finlay^g, A.B. Garnsworthy^b, A.B. Hayes^f,
A.T. Laffoley^g, T. Nano^h, P. Navrátil^b, C.J. Pearson^b, J. Pore^d, S. Quaglioni^a, C.E. Svensson^g, K. Starosta^d, I.J

^a Lawrence Livermore National Laboratory, PO Box 808, Livermore, CA 94550, USA

^b TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada

^c Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7, Canada

^d Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada

^e Department of Physics, University of Liverpool, Liverpool L69 7ZE, United Kingdom

^f Department of Physics & Astronomy, University of Rochester, Rochester, NY, 14627, USA

^g Department of Physics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

^h University of Windsor, Windsor Ontario, N9B 3P4, Canada

The TIGRESS Integrated Plunger (TIP)

TIP is ^a new TRIUMF experimental programfor Recoil Distance Method lifetime studies.

TIP offers great flexibility for nuclear structure studies via **Doppler-shift lifetime** and **Coulomb excitation** measurements utilizing ^a diverse set of ancillary chargedparticle detectors and ^a variety of reaction mechanisms.

- Rotating G10 target wheel accommodates two targets and beam-tuning apertures.
- $\overline{}$ Ancillary charged-particle detector systems for the TIP scattering chamber.
	- $\mathcal{L}_{\mathcal{A}}$ Modular, 44-element silicon PIN diode array for target recoil tagging enabling **Doppler-shift lifetime measurements**.
	- **The State** Annular silicon S3 for high-resolution kinematic reconstruction of inelastic scattering partners from **Coulomb excitation measurements**.
	- $\mathcal{L}_{\mathcal{A}}$ 24-element CsI(Tl) scintillator wall for particle identification via pulse shape analysis following **fusion-evaporation reactions**.

- Rotating G10 target wheel accommodates two targets and beam-tuning apertures.
- Ancillary charged-particle detector systems for the TIP scattering chamber.
	- \blacksquare Modular, 44-element silicon PIN diode array for target recoil tagging enabling **Doppler-shift lifetime measurements**.
	- $\mathcal{L}_{\mathcal{A}}$ Annular silicon S3 for high-resolution kinematic reconstruction of inelastic scattering partners from **Coulomb excitation measurements**.
	- $\mathcal{L}_{\mathcal{A}}$ 24-element CsI(Tl) scintillator wall for particle identification via pulse shape analysis following **fusion-evaporation reactions**.

- Rotating G10 target wheel accommodates two targets and beam-tuning apertures.
- Ancillary charged-particle detector systems for the TIP scattering chamber.
	- \blacksquare Modular, 44-element silicon PIN diode array for target recoil tagging enabling **Doppler-shift lifetime measurements**.
	- \blacksquare Annular silicon S3 for high-resolution kinematic reconstruction of inelastic scattering partners from **Coulomb excitation measurements**.
	- $\mathcal{L}_{\mathcal{A}}$ 24-element CsI(Tl) scintillator wall for particle identification via pulse shape analysis following **fusion-evaporation reactions**.

- Rotating G10 target wheel accommodates two targets and beam-tuning apertures.
- Ancillary charged-particle detector systems for the TIP scattering chamber.
	- \blacksquare Modular, 44-element silicon PIN diode array for target recoil tagging enabling **Doppler-shift lifetime measurements**.
	- \blacksquare Annular silicon S3 for high-resolution kinematic reconstruction of inelastic scattering partners from **Coulomb excitation measurements**.
	- \blacksquare 24-element CsI(Tl) scintillator wall for particle identification via pulse shape analysis following **fusion-evaporation reactions**.

- Rotating G10 target wheel accommodates two targets and beam-tuning apertures.
- Ancillary charged-particle detector systems for the TIP scattering chamber.
	- ▆ Modular, 44-element silicon PIN diode array for target recoil tagging enabling **Doppler-shift lifetime measurements**.
	- **The State** Annular silicon S3 for high-resolution kinematic reconstruction of inelastic scattering partners from **Coulomb excitation measurements**.
	- \blacksquare 24-element CsI(Tl) scintillator wall for particle identification via pulse shape analysis following **fusion-evaporation reactions**.

"Doppler shift lifetime measurements using

- $\mathcal{L}_{\mathcal{A}}$ **E** Rotating G10 targ**the TIGRESS Integrated Plunger device"**ng apertures.
- $\mathcal{L}_{\mathcal{A}}$ **Ancillary charged-particle dete Aaron Chester, SFU**attering chamber.
	- I. **Modular, 44-element 2:15pm Tuesday, June 17**t recoil tagging enabling **Doppler-shift lifetime measurements**. **C-203**
	- m, Annular silicon S3 for high-resolution kinematic reconstruction of inelastic scattering partners from **Coulomb excitation measurements**.
	- ▅ 24-element CsI(Tl) scintillator wall for particle identification via pulse shape analysis following **fusion-evaporation reactions**.

TIP for Doppler Shift Attenuation Measurements

36Ar Doppler Shift Attenuation Measurements

- ³⁶Ar Coulomb excited on carbon layer. Gold backing provided stopping.
- \blacksquare 44-element silicon diode array for particle-gamma coincidence trigger.

Gold Target DSAM Line Shape of ³⁶Ar

SF

Recoiling Charged Particle Energies

Evidence of two reaction mechanisms producing recoiling charged particles.

Recoiling Charged Particle Rise Times

Further evidence from digital pulse shape analysis of signal rise times.

Recoiling Charged Particle Rise Times

Further evidence from digital pulse shape analysis of signal rise times.

Particle-Gamma Coincidences: Enhanced Exp. Sensitivity

Gamma-ray energy spectra in coincidence with particles in the silicon PIN diode wall:

- н Top [→] Recoiling charged particles detected in **Rings 1, ²** and **Rings 3, ⁴**.
- \blacksquare ■ Bottom → **Carbon** and **alpha-particle** recoils via rise-time separation.

The TIP and TIGRESS Collaborations

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

journal homepage: www.elsevier.com/locate/nima

The TIGRESS Integrated Plunger ancillary systems for electromagnetic transition rate studies at TRIUMF

NUCLEAR NSTRUMENTS METHODS

P. Voss^{a,*}, R. Henderson^b, C. Andreoiu^a, R. Ashley^a, R.A.E. Austin^c, G.C. Ball^b, P.C. Bender^b, A. Bey^b, A. Cheeseman^b, A. Chester^a, D.S. Cross^a, T.E. Drake^d, A.B. Garnsworthy^b, G. Hackman^b, R. Holland^e, S. Ketelhut^b, P. Kowalski^e, R. Krücken^b, A.T. Laffoley^f, K.G. Leach^f, D. Miller^b, W.J. Mills^b, M. Moukaddam^b, C.J. Pearson^b, J. Pore^a, E.T. Rand^f, M.M. Rajabali ^b, U. Rizwan^a, J. Shoults^e, K. Starosta^{a,**}, C.E. Svensson^f, E. Tardiff^b, C. Unsworth ^b, K. Van Wieren ^e, Z.-M. Wang ^{a,b}, J. Williams ^a

^a Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada V5A 1S6

^b TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3

^c Department of Astronomy and Physics, St. Mary's University, Halifax, NS, Canada B3H 3C3

- ^d Department of Physics, University of Toronto, Toronto, ON, Canada M5S 1A7
- ^e Science Technical Center, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- ^f Department of Physics, University of Guelph, Guelph, ON, Canada N1G 2W1

This work is supported in part by NSERC award SAPIN/371656-2010, SAPEQ/390539-2010, andthe SFU Vice President, Research.

Summary

- \blacksquare Gamma-ray spectroscopy plays ^a major role in quantifying the evolution of nuclear structure for exotic radionuclides.
- \blacksquare TIGRESS is the key driver for such experimental studies using accelerated beams provided by the ISAC-II facility at TRIUMF. ^A rich set of auxiliary particle detector arrays compliment and enhance these spectroscopy studies.
	- **SHARC** → Transfer reactions for single particle structure evolution.
	- **SPICE** → Internal conversion electron spectroscopy.
	- \blacksquare ■ **BAMBINO** → Low energy Coulomb excitation.
	- \blacksquare **■ TIP** → Low energy Coulomb excitation and Doppler-shift lifetime.
- \blacksquare Additional coupling schemes with **DESCANT** and **EMMA** have been demonstrated or are anticipated.

Thank You!Merci!

Preliminary Line Shape Simulations

- ٠ Gamma-ray line shape analysis presently underway in collaboration with Tom Drake of U. of Toronto.
- Experimental setup modelled within GEANT4.
- Coulomb excitation reaction kinematics employedfor ³⁶Ar momentum distribution.
- ^A chi-square minimization of the fit between data and simulations yields the lifetime.

Philip J. Voss2014 CAP

counts

The Case for Self-Conjugate ³⁶Ar

[1] K.-H. Speidel et al., Phys. Lett. B **632,** 207 (2006) [2] B. V. Pritychenko et al., Phys. Lett. B **461**, 322 (1999) [3] P. D. Cottle et al., Phys. Rev. C **60**, 031301(R) (1999)

Ground state configuration of ³⁶Ar

Segmented Germanium Clover

Large germanium solid angle coverage without compromising good angular resolution for Doppler reconstruction. Improvement of peak-to-total by **add-back** of several partial energy deposits.

Compton Suppressed Germanium Clover

Active and passive vetoing of events which Compton scatter out of active germanium volume and into suppressor. Improvement of peak-to-total by **suppression** of these partial energy depositions.

TIGRESS ⁹⁰° clovers summed: ⁶⁰Co source spectra illustrating effect of **add back** and **Compton suppression**.

