Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb$^{-1}$ of proton-proton collision data. The ATLAS Collaboration.

Abstract

This note presents an update of the measurements of the properties of the newly discovered boson using the full pp collision data sample recorded by the ATLAS experiment at the LHC for the channels $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ(\ast) \rightarrow 4\ell$ and $H \rightarrow WW(\ast) \rightarrow \ell\nu\ell\nu$, corresponding to integrated luminosities of up to 4.8 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 20.7 fb$^{-1}$ at $\sqrt{s}=8$ TeV. The combination also includes results from the $H \rightarrow \tau\tau$ and $H \rightarrow b \bar{b}$ channels based on pp collision data corresponding to an integrated luminosity of up to 4.7 fb$^{-1}$ at $\sqrt{s}=7$ TeV and 13 fb$^{-1}$ at $\sqrt{s}=8$ TeV. The combined signal strength is determined to be $\mu = 1.30 \pm 0.13$ (stat) ± 0.14 (sys) at a mass of 125.5 GeV. The cross section ratio between vector boson mediated and gluon (top) initiated Higgs boson production processes is found to be $\mu_{VBF} + VH/\mu_{ggF} + t\bar{t}H = 1.2 \pm 0.7^{-0.5}$, giving more than 3$\sigma$ evidence for Higgs-like boson production through vector-boson fusion. Measurements of relative branching fraction ratios between the $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ(\ast) \rightarrow 4\ell$ and $H \rightarrow WW(\ast) \rightarrow \ell\nu\ell\nu$ channels, as well as combined fits testing the fermion and vector coupling sector, couplings to W and Z and loop induced processes of the Higgs-like boson show no significant deviation from the Standard Model expectation.

\copyright Copyright 2013 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
Talk Overview

Introduction
i. Higgs Boson Production and decay
ii. The ATLAS detector and the LHC
iii. Combined **Mass measurements** from $H \rightarrow \gamma\gamma$ & $H \rightarrow ZZ^*$

Properties
iv. Combining **Coupling measurements** for all search channels
v. **Combined** Spin analysis from $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^*$, $H \rightarrow WW^*$
vi. **Differential Cross sections** from $H \rightarrow \gamma\gamma$

Summary
vii. Conclusions & Outlook

[ATLAS-CONF-2013-072] [ATLAS-CONF-2013-040]

New: [Mass paper – to be submitted]
i.a Higgs Boson Production

Existence of Higgs field essential for mass generation of Weak vector bosons + quarks & leptons in Standard Model

Spontaneous symmetry breaking in Higgs Mechanism produces new scalar particle: the Higgs boson

In *pp* collisions Higgs Boson produces via $gg \rightarrow H$, VBF, ZH, WH & ttH

Cross section for various m_H at $\sqrt{s} = 8$ TeV:
i.b Higgs Boson Decay & Discovery

Higgs Boson decays after $10^{-10} - 10^{-13}$ ps into other SM particles

Branching fractions for Higgs decay:

![Graph showing branching fractions for Higgs decay](image)

ATLAS Search Channels

* $H \rightarrow b\bar{b}$ for VH
* $H \rightarrow \tau^+\tau^-$
* $H \rightarrow \mu^+\mu^-$
* $H \rightarrow \gamma\gamma$
* $H \rightarrow Z\gamma$
* $H \rightarrow WW^{(*)}$
* $H \rightarrow ZZ^{(*)}$

July 4th 2012: ATLAS and CMS announced discovery of new boson

Searches overview: (see talk of Doug Schouten); Coupling & Spin compatible with SM Higgs boson
ii. ATLAS Detector & Large Hadron Collider

ATLAS is multipurpose detector

focus: Higgs, EW, BSM, B physics

Multilayered EM & Hadronic calorimeter
excellent Tracking & Muon detection

Very successful 2011 & 2012 run period:

![Graph showing total integrated luminosity from 2011 to 2012](image)

- **2011, \(\sqrt{s} = 7 \text{ TeV} \)**
 - Delivered: 5.46 fb\(^{-1}\)
 - Recorded: 5.08 fb\(^{-1}\)
 - Physics: 4.57 fb\(^{-1}\)

- **2012, \(\sqrt{s} = 8 \text{ TeV} \)**
 - Delivered: 22.8 fb\(^{-1}\)
 - Recorded: 21.3 fb\(^{-1}\)
 - Physics: 20.3 fb\(^{-1}\)

24.9 fb\(^{-1}\) integrated luminosity good for physics
iii.a New! Combined mass measurements for $H \to \gamma\gamma$ & $H \to ZZ^*$

Much improved EM cluster energy correction via MVA regression & more accurate geometry

→ Largely improved resolution for $H \to \gamma\gamma$.

Energy scale & resolution extracted from reference process: $Z \to ee$

Good data & sim. agreement after corrections

linearity and extrapolation to photons checked with other leptonic reference processes and $Z \to \ell\ell\gamma$ events.

Large effort reduced systematic uncertainties in $H \to \gamma\gamma$ by more than a factor of two
iii.b New! Combined mass measurements for $H \rightarrow \gamma \gamma$ & $H \rightarrow ZZ^*$

Two measurements w/ good mass resolution:

$H \rightarrow \gamma \gamma$ & $H \rightarrow ZZ^* \rightarrow 4\ell$

| Higgs Mass [GeV] | $H \rightarrow \gamma \gamma$ | $H \rightarrow ZZ^* \rightarrow 4\ell$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Old calibration</td>
<td>125.98 ± 0.42 ± 0.28</td>
<td>124.51 ± 0.52 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>126.8 ± 0.2 ± 0.7</td>
<td>124.3 +0.6 +0.5 −0.5 −0.3</td>
</tr>
</tbody>
</table>

First error is statistical, second systematic.

Combine both measurements under the assumption of a single resonance:

Profile likelihood for combination

$$\Lambda(m_H) = \frac{\mathcal{L}(m_H)}{\mathcal{L}(\hat{m}_H)}$$

with the full likelihood contours from the individual measurements in m_H & μ, taking into account correlated systematics.
iii.c Combining Mass measurements from $H \to \gamma\gamma$ & $H \to ZZ^*$

Combined mass maximising test statistics:

$$m_H = 125.36 \pm 0.37 \pm 0.18 \text{ GeV}$$

Old calibration $125.5 \pm 0.2^{+0.5}_{-0.6} \text{ GeV}$

To test the consistency between both measurements a modified test statistic can be used.

$$\Delta m_H = m_H^{\gamma\gamma} - m_H^{4\ell}$$

$$\Delta m_H = 1.47 \pm 0.67 \pm 0.28 \text{ GeV}$$

Old calibration $2.3^{+0.6}_{-0.7} \pm 0.6 \text{ GeV}$

Compatibility with Δm_H of the level of 4.9\% (2.0\sigma)

Assuming non-gaussian uncertainties for the 3 principal systematic uncertainties ($Z \to ee$ calibration/extrapolation, material upstream & energy scale of presampler detector) improves compat. to 11\%.
iv.a Combining Coupling measurements

Signal strength combination from

\[H \rightarrow \gamma \gamma, \ H \rightarrow ZZ^* \rightarrow 4\ell, \ H \rightarrow WW^* \rightarrow \ell\nu\ell\nu \]

\[VH \rightarrow Vb\bar{b}, \ H \rightarrow \tau\tau \]

Can combine all measurements under the assumption of a single resonance:

\[\Lambda(\mu) = \frac{\mathcal{L}(\mu)}{\mathcal{L}(\hat{\mu})} \]

Profile likelihood for combination

Coupling strength \(\mu = \sigma^{\text{measured}} / \sigma^{\text{SM}} \)

\[
\begin{array}{c|c|c|c}
 & H \rightarrow \gamma \gamma & H \rightarrow ZZ^* \rightarrow 4\ell & H \rightarrow WW^* \rightarrow \ell\nu\ell\nu \\
\hline
\mu & 1.6 \pm 0.3 & 1.4 \pm 0.4 & 1.0 \pm 0.3 \\
\hline
VH \rightarrow Vb\bar{b} & 0.2 \pm 0.7 & 1.4 \pm 0.5 \\
\end{array}
\]

Evaluated at \(m_H = 125.5 \text{ GeV} \)

Plots: Transverse mass \(m_T = \left(E_T^{\ell\ell} + E_T^{\text{miss}} \right)^2 - |p_T^{\ell\ell} + E_T^{\text{miss}} | \right)^{1/2} \) distributions for \(H \rightarrow WW^* \rightarrow \ell\nu\ell\nu \)
iv.b Combining Coupling measurements

Combined signal strength results for \(\mu \) and \(\mu_{VBF+VH}/\mu _{ggF+ttH} \):

<table>
<thead>
<tr>
<th>ATLAS Prelim. (m_H = 125.5) GeV</th>
<th>Total uncertainty</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H \rightarrow \gamma \gamma) (\mu = 1.57^{+0.33}_{-0.28})</td>
<td>(\pm 1\sigma) on (\mu)</td>
</tr>
<tr>
<td>(H \rightarrow ZZ^* \rightarrow 4l) (\mu = 1.44^{+0.40}_{-0.35})</td>
<td></td>
</tr>
<tr>
<td>(H \rightarrow WW^* \rightarrow l\nu\nu) (\mu = 1.00^{+0.32}_{-0.29})</td>
<td></td>
</tr>
<tr>
<td>Combined (H \rightarrow \gamma \gamma, ZZ^, WW^) (\mu = 1.35^{+0.21}_{-0.20})</td>
<td></td>
</tr>
<tr>
<td>(W,Z \rightarrow b\bar{b}) (\mu = 0.2^{+0.7}_{-0.6})</td>
<td></td>
</tr>
<tr>
<td>(H \rightarrow \tau \tau) (8 TeV data only) (\mu = 1.4^{+0.5}_{-0.4})</td>
<td></td>
</tr>
<tr>
<td>Combined (H \rightarrow b\bar{b}, \tau \tau) (\mu = 1.09^{+0.36}_{-0.32})</td>
<td></td>
</tr>
</tbody>
</table>

Overall signal production strength: \(\mu = 1.30^{+0.18}_{-0.17} \)

Evidence for VBF+VH: \(\mu_{VBF+VH}/\mu _{ggF+ttH} = 1.4^{+0.7}_{-0.5} \)
iv.c Combining Coupling measurements

Projection in $\mu_{VBF+VH} - \mu_{ggF+ttH}$ plane:

Coupling ratio for VBF production only: $\frac{\mu_{VBF}}{\mu_{ggF+ttH}} = 1.4^{+0.5}_{-0.4} + 0.3$

→ Evidence at 4.1σ for VBF production!
iv.d Combining Coupling measurements

More detailed study on the Higgs coupling can be done via *leading order tree-level motivated* framework.

Assumptions:

i. **Single resonance** at $m_H = 125.5$ GeV

ii. **Narrow width approximation** holds, i.e. rates of the process $i \rightarrow H \rightarrow f$ are given by

$$\sigma \cdot B = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

with Γ_H the Higgs width, and Γ_f the partial width of the $H \rightarrow f$ transition, and σ_i the cross section for $i \rightarrow H$ production.

iii. **No modifications in the tensor structure** of the SM Lagrangian, i.e. **Higgs is 0^+**

Free parameters in the framework: coupling scale factors κ_j^2 ratio of measured over SM cross section times partial decay width, κ_H^2 the total Higgs width, or double ratios of the coupling scale factors $\lambda_{ij} = \kappa_i / \kappa_j$.

E.g. the effective couplings of $gg \rightarrow H \rightarrow \gamma\gamma$ can be written as

$$\frac{(\sigma \cdot B)^{\text{meas}}}{(\sigma \cdot B)^{\text{SM}}} = \frac{\kappa_g^2 \kappa_\gamma^2}{\kappa_H^2}$$
iv.e Combining Coupling measurements

Selection of benchmark models with focus on different observables:

<table>
<thead>
<tr>
<th>Model</th>
<th>Probed couplings</th>
<th>Parameters of interest</th>
<th>Functional assumptions</th>
<th>Example: $gg \to H \to \gamma\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Couplings to fermions and bosons</td>
<td>κ_V, κ_F</td>
<td>$\sqrt{\sqrt{\sqrt{\sqrt{}}}}$</td>
<td>$\kappa_F^2 \cdot \kappa_V^2 (\kappa_F, \kappa_V)/\kappa_H^2 (\kappa_F, \kappa_V)$</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>λ_{FV}, κ_V</td>
<td>$\sqrt{\sqrt{\sqrt{\sqrt{}}}}$</td>
<td>$\kappa_V^2 \cdot \lambda_{FV}^2 \cdot \kappa_V^2 (\lambda_{FV}, \lambda_F, \lambda_{FV}, 1)$</td>
</tr>
<tr>
<td>3</td>
<td>Custodial symmetry</td>
<td>$\lambda_{WZ}, \lambda_{FZ}, \kappa_{ZZ}$</td>
<td>$\sqrt{\sqrt{\sqrt{\sqrt{}}}}$</td>
<td>$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \kappa_V^2 (\lambda_{FZ}, \lambda_{FZ}, \lambda_{FZ}, \lambda_{WZ})$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>$\lambda_{WZ}, \lambda_{FZ}, \lambda_{YZ}, \kappa_{ZZ}$</td>
<td>$\sqrt{\sqrt{\sqrt{\sqrt{}}}}$</td>
<td>$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2 \cdot \lambda_{YZ}^2$</td>
</tr>
<tr>
<td>5</td>
<td>Vertex loops</td>
<td>κ_g, κ_γ</td>
<td>$\sqrt{\sqrt{\sqrt{\sqrt{}}}}$</td>
<td>$\kappa_g^2 \cdot \kappa_\gamma^2 / \kappa_H^2 (\kappa_g, \kappa_\gamma)$</td>
</tr>
</tbody>
</table>

The ticks correspond to a certain fixed functional dependence – more details in backup

Model 1: One coupling factor for fermions and one coupling factor for bosons: κ_F, κ_V

Model 2: Removing the constraint on the Higgs boson width (i.e. that the measured partial widths have to saturate the total width) only the ratio $\lambda_{FV} = \kappa_F / \kappa_V$ and $\kappa_{VV} = \kappa_V^2 / \kappa_H$ can be measured.

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\kappa_F = 0.99^{+0.17}_{-0.15}$</td>
<td>$\lambda_{FV} = 0.86^{+0.14}_{-0.12}$</td>
</tr>
<tr>
<td>$\kappa_V = 1.15^{+0.08}_{-0.08}$</td>
<td>$\kappa_{VV} = 1.28^{+0.16}_{-0.15}$</td>
</tr>
</tbody>
</table>

Compatibility of SM with both model fits: **10%**.
iv.f Combining Coupling measurements

SM custodial symmetry: \(W \) \& \(Z \) couple identically to Higgs, i.e. \(\lambda_{WZ} = \kappa_W / \kappa_Z = 1 \)

Model 3 \& 4: \(H \rightarrow VV \) \& \(i \rightarrow H \rightarrow VV \)

information; Model 4 also includes degrees of freedom for a potential BSM to \(H \rightarrow \gamma\gamma \)

\begin{align*}
\text{Model 3} & \quad \lambda_{WZ} = 0.94^{+0.14}_{-0.29} \\
\text{Model 4} & \quad \lambda_{WZ} = 0.80 \pm 0.15
\end{align*}

Compatibility of SM with Model 4: 21%.

Calculated using full 7D covariance between determined values.

Model 5: Result for \(\kappa_g \) \& \(\kappa_\gamma \):

\begin{align*}
\kappa_g & = 1.08^{+0.15}_{-0.13} \\
\kappa_\gamma & = 1.19^{+0.15}_{-0.12}
\end{align*}

Compatibility of SM with fit: 9%.

Calculated using full 2D covariance between determined values.
Spin & CP can be inferred by angular correlation of Higgs decay products:

Channels used for combination: \(H \rightarrow \gamma\gamma \)
\(H \rightarrow ZZ^* \), \(H \rightarrow WW^* \).

Hypothesis test: Spin 0\(^-\) (SM) versus Spin 2\(^+\)

Test spin 2 admixture of leading order \(q\bar{q} \rightarrow X \)
& \(gg \rightarrow X \) production: \(f_{q\bar{q}} \)

Entire Spin 2\(^+\) configuration space excluded at 99.9% \(CL_s \).
Differential cross section measurements from \(H \rightarrow \gamma\gamma \)

Analysis Idea Illustrated

Simultaneous unbinned Likelihood fit in \(m_{\gamma\gamma} \)

Unfolding

* Unfold yields into cross sections using **bin-by-bin** correction factors
* Truth fiducial definition chosen to closely match experimental selection.
 → Minimizes model dependence.

Measured 7 variables: Higgs \(p_T \) and rapidity, \(\cos \Theta^* \), \(N_{\text{jets}} \), leading jet \(p_T \), \(p_T^{H+jj} \), \(\Delta \phi_{jj} \)
Higgs p_T, helicity angle, and N_{jets} compared with HRes, Powheg+Py8, HJ Minlo+Py8

Compatibility with SM predictions:

P-value based on χ^2 using full experimental + theory covariance

| N_{jets} | $p_T^{\gamma\gamma}$ | $|y^{\gamma\gamma}|$ | $|\cos(\theta^*)|$ | $p_T^{j_1}$ | $\Delta\phi_{jj}$ | $p_T^{\gamma\gamma jj}$ |
|------------------|----------------------|--------------------|---------------------|-------------|----------------|----------------|
| POWHEG | 0.54 | 0.55 | 0.38 | 0.69 | 0.79 | 0.42 |
| MINLO | 0.44 | – | – | 0.67 | 0.73 | 0.45 |
| HRES | 1.0 | 0.39 | 0.44 | – | – | – |

* Statistical limited at this point
→ Good agreement with SM predictions.
vi.a Conclusion

* **New:** Combination of precision mass measurement from $H \rightarrow \gamma \gamma$ & $H \rightarrow ZZ^*$:

\[
m_H = 125.36 \pm 0.37 \pm 0.18 \text{ GeV}
\]

New calibration reduces tension between both channels.

* **Overall signal production strength** combining $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^*$, $H \rightarrow WW^*$, $VH \rightarrow Hb\bar{b}$, $H \rightarrow \tau\tau$: (with old calibration and mass)

\[
\mu = 1.30^{+0.18}_{-0.17}
\]

Observed coupling compatible with SM Higgs

* **VBF coupling strength from combination:**

\[
\mu_{\text{VBF}} / \mu_{\text{ggF+ttH}} = 1.4^{+0.5+0.4}_{-0.4-0.3}
\]

→ Evidence of 4.1σ for VBF production of Higgs
vi.b Conclusion

* Results with *leading order* tree-level motivated framework:

Assumptions Single resonance, 0^+, narrow width approx.

* 5 models with focus on different observables:
 1/2 Couplings to Fermions & Bosons
 3/4 Custodial Symmetry
 5 Vertex loops

→ All determined couplings compatible with the SM (p-values ranging from 12-20%)

* Differential cross section measurements from $H \rightarrow \gamma \gamma$

* 7 observables studied, e.g. Higgs p_T and helicity angle

→ All measured distributions compatible with the SM.

ATLAS Preliminary

$m_H = 125.5 \text{ GeV}$

<table>
<thead>
<tr>
<th>Model: κ_{ψ}, κ_F</th>
<th>$\kappa_F = 1.15^{+0.08}_{-0.08}$</th>
<th>$\kappa_F = 0.99^{+0.17}_{-0.15}$</th>
<th>$\pm 1\sigma$</th>
<th>$\pm 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{SM}=10%$</td>
<td></td>
<td></td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>$p_{SM}=19%$</td>
<td></td>
<td></td>
<td>2.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: $\lambda_{FV}, \lambda_{WZ}, \kappa_F$</th>
<th>$\lambda_{FV} = 0.86^{+0.14}_{-0.12}$</th>
<th>$\lambda_{WZ} = 0.94^{+0.14}_{-0.29}$</th>
<th>$\pm 1\sigma$</th>
<th>$\pm 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{SM}=10%$</td>
<td></td>
<td></td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>$p_{SM}=19%$</td>
<td></td>
<td></td>
<td>2.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: $\lambda_{WZ}, \lambda_{FF}, \kappa_{\psi}$</th>
<th>$\lambda_{WZ} = 0.94^{+0.14}_{-0.29}$</th>
<th>$\lambda_{FF} \in [-1.48,-0.99] \cup [0.99,1.50]$</th>
<th>$\pm 1\sigma$</th>
<th>$\pm 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{SM}=20%$</td>
<td></td>
<td></td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>$p_{SM}=19%$</td>
<td></td>
<td></td>
<td>2.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: $\lambda_{wq}, \lambda_{qg}, \kappa_{\psi}$</th>
<th>$\lambda_{wq} \in [-1.24,-0.81] \cup [0.78,1.15]$</th>
<th>$\lambda_{qg} \in [-1.24,-0.81] \cup [0.78,1.15]$</th>
<th>$\pm 1\sigma$</th>
<th>$\pm 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{SM}=15%$</td>
<td></td>
<td></td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>$p_{SM}=19%$</td>
<td></td>
<td></td>
<td>2.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: $\kappa_{\psi}, \kappa_{g}$</th>
<th>$\kappa_g = 1.08^{+0.15}_{-0.13}$</th>
<th>$\kappa_{g} = 1.19^{+0.15}_{-0.12}$</th>
<th>$\pm 1\sigma$</th>
<th>$\pm 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{SM}=9%$</td>
<td></td>
<td></td>
<td>2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>$p_{SM}=18%$</td>
<td></td>
<td></td>
<td>2.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model: $\kappa_{\psi}, \kappa_{x_{\psi}}, B_{\psi}$</th>
<th>$B_{\psi} \leq 0.41$</th>
<th>$\pm 1\sigma$</th>
<th>$\pm 2\sigma$</th>
<th>$\pm 1\sigma$</th>
<th>$\pm 2\sigma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{SM}=18%$</td>
<td></td>
<td>2.6</td>
<td>1.0</td>
<td>2.9</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Updated coupling analysis paper in preparation

Updated differential & fiducial cross section paper in preparation

Other interesting results out, like low- & high-mass search for additional narrow resonances [ATLAS-CONF-2014-031]

We are in the transition period from discovery to more precise measurements. Very exciting conditions for LHC Run period 2.

Slight **Paradigm shift ongoing:** unfolded differential distributions will make it possible for outsiders to test our understanding of the Higgs boson

Thank you
Backup