Recent results from the BESIII Experiment

Matthew Shepherd Indiana University

Congress of the Canadian Association of Physicists

Sudbury, Ontario

June 19, 2014

• How do the properties of QCD manifest themselves in the structure and spectrum of hadrons?

- How do the properties of QCD manifest themselves in the structure and spectrum of hadrons?
- QCD suggests
 - confinement: stable hadrons need to be colorless
 - gluon-gluon interactions: hadrons with "valence gluons" (hybrids and glueballs) could exist

- How do the properties of QCD manifest themselves in the structure and spectrum of hadrons?
- QCD suggests
 - confinement: stable hadrons need to be colorless
 - gluon-gluon interactions: hadrons with "valence gluons" (hybrids and glueballs) could exist
- Experiment:
 - most states are quark-antiquark mesons or three-quark baryons
 - little evidence for hybrids or glueballs

- How do the properties of QCD manifest themselves in the structure and spectrum of hadrons?
- QCD suggests
 - confinement: stable hadrons need to be colorless
 - gluon-gluon interactions: hadrons with "valence gluons" (hybrids and glueballs) could exist
- Experiment:
 - most states are quark-antiquark mesons or three-quark baryons
 - little evidence for hybrids or glueballs
- Can we find evidence for these more interesting hadrons that are, in principle, allowed by QCD?

The Experimentary B BEPCII

College of

Bloomingt

Congress, Sudbury June 19, 2014

The Landscape

- all states below DD threshold have been observed
- charm anti-charm potential model describes spectrum below DD threshold
- attempt to understand fundamental structure by studying
 - pattern of masses
 - transitions between states
- states with unconventional charmonium properties began appearing in the spectrum about a decade ago

U DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

The History: Y(4260)

• I^{--} state produced in e^+e^-

 mass greater than 2M(D) so we expect OZI favored decay:

College of Arts and Sciences

Bloomington

CLEO Collaboration, PRD 80, 072001 (2009)

 $\frac{\mathcal{B}(Y(4260) \to D\bar{D})}{\mathcal{B}(Y(4260) \to \pi\pi J/\psi)} < 4$

compare with \approx 500 for ψ (3770)

More History: Y(4360)

- similar to Y(4260) except dominantly decays to $\pi\pi\psi$ '
- additional state at 4660 MeV
- nature of Y states is unknown
- all produced in e⁺e⁻ collisions
- perfect problem to study with e⁺e⁻
 collider in the charmonium region
 - motivation for dedicated running at BESIII starting in the winter of 2012-2013

Liu, Qin, and Yuan, PRD 78, 014032 (2008) using data from: BaBar Collaboration, PRL 98, 212001 (2007) Belle Collaboration, PRL 99, 142002 (2007)

The Available Data

Data sets collected by BESIII since 2009

e ⁺ e ⁻ collision E _{cm}	L or N	Physics Topics
3097 MeV: J/ψ	I.3 x I0 ⁹ J/ψ	light hadron spectroscopy
3686 MeV: Ψ'	0.4 x 10 ⁹ Ψ'	charmonium transitions; light hadron spectroscopy
ψ(3770)	2.9 fb ⁻¹	D decays; precision flavor physics
ψ(4040)	0.5 fb ⁻¹	charmonium spectroscopy
3554 MeV	0.024 fb ⁻¹	precision determination of τ mass
4230 MeV - 4260 MeV	1.9 fb ⁻¹	charmonium spectroscopy; study of Y(4260) and Z_c
4360 MeV	0.5 fb ⁻¹	charmonium spectroscopy; study of Y(4360)
4100 MeV - 4400 MeV	0.5 fb ⁻¹	coarse scan; Y spectroscopy
3850 MeV - 4590 MeV	0.8 fb ⁻¹	fine scan; R measurement; Y spectroscopy
4600 MeV	0.5 fb ⁻¹	charmonium spectroscopy

(Red: partial or full data sets for the analyses presented today)

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Ш

$e^+e^- \rightarrow \pi^+\pi^-J/\psi$

- ππJ/ψ is the only firmly established decay mode of Y(4260)
 - preliminary Belle result limits $\sigma(KKJ/\Psi)$ to about 1/10 of $\pi\pi J/\Psi$ (arXiv:1402.6578)
- natural starting place for study:
 - collide e⁺e⁻ near 4260 MeV
 - examine $\pi\pi J/\psi$ Dalitz plot

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at $E_{cm} = 4260 \text{ MeV}$

• J/ψ is cleanly identified in dilepton decay modes

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at $E_{cm} = 4260 \text{ MeV}$

• Structure in $\pi^+ J/\psi$ mass that does not arise from $\pi^+\pi^-$ interactions

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

DEPARTMENT OF PHYSICSINDIANA UNIVERSITY
College of Arts and Sciences
Bloomington

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

$e^+e^- \rightarrow \pi^+ (D\overline{D}^*)^\mp$ at $E_{cm} = 4260 \text{ MeV}$

• If $Z_c(3885)$ is $Z_c(3900)$:

 $\frac{\Gamma(Z_c(3900) \to D\bar{D}^*)}{\Gamma(Z_c(3900) \to \pi J/\psi)} = 6.2 \pm 2.9$

• π angular distribution establishes $J^P = I^+$

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

TU

$Z_{c}(3900)^{\pm}$

- Charged charmonium-like structure above DD* mass threshold
- Decays to (DD*)[±] and π[±]J/ψ in ratio of 6±3 : I
- Evidence for neutral isospin partner [T. Xiao et al., PLB 727, 366 (2013)]
- $\int^{P} = |+|$
- Production seems correlated with Y(4260) decay

DEPARTMENT OF PHYSICSINDIANA UNIVERSITY
College of Arts and Sciences
Bloomington

- significant $\pi^+\pi^-h_c$ production reported by CLEO at $E_{cm} = 4170$ MeV [PRL 107, 041803 (2011)]
- correlated with Y(4260)?
- h_c is spin singlet (S=0) state
 - different charm quark spin orientation than J/ψ
- explore $\pi^+\pi^-$ transitions to h_c as a function of E_{cm}
- search for $\pi^{\pm}h_c$ states

- no sharp structure in $\pi^+\pi^-h_c$ cross section
 - correlation with Y(4260) or Y(4360) unclear

- no sharp structure in $\pi^+\pi^-h_c$ cross section
 - correlation with Y(4260) or Y(4360) unclear
- narrow $\pi^{\pm}h_c$ structure observed
 - $M[Z_c(4020)] = 4023 \pm 3 \text{ MeV}$
 - $\Gamma[Z_c(4020)] = 8 \pm 4 \text{ MeV}$

- no sharp structure in $\pi^+\pi^-h_c$ cross section
 - correlation with Y(4260) or Y(4360) unclear
- narrow $\pi^{\pm}h_c$ structure observed
 - $M[Z_c(4020)] = 4023 \pm 3 \text{ MeV}$
 - $\Gamma[Z_c(4020)] = 8 \pm 4 \text{ MeV}$
- no significant evidence for $Z_c(3900) \rightarrow \pi^{\pm} h_c$
 - at $E_{cm} = 4260 \text{ MeV}$:

$$\sigma(e^+e^- \to \pi^\pm Z_c(3900)^\mp \to \pi^+\pi^-h_c) < 11 \text{ pb}$$

$$\sigma(e^+e^- \to \pi^\pm Z_c(3900)^\mp \to \pi^+\pi^- J/\psi) = 13 \pm 5 \text{ pb}$$

BESIII Collaboration, PRL 110, 252001 (2013)

U DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

$e^+e^- \rightarrow \pi^+ (D^*\overline{D^*})^+$ at $E_{cm} = 4260 \text{ MeV}$

BESIII Collaboration, PRL 112, 132001 (2014)

- deviation from phase space decay
 - could be described by a charged state decaying to $D^*\overline{D}^*$
- if $Z_c(4025)^{\pm}$ is the $Z_c(4020)^{\pm}$ observed in the $\pi^{\pm}h_c$ spectrum:

$$\frac{\Gamma(Z_c(4020) \to D^* \bar{D}^*)}{\Gamma(Z_c(4020) \to \pi h_c)} = 12 \pm 5$$

• similar behavior to $Z_c(3900)^{\pm}$

compare with $\pi^{\pm}h_c$ structure: M[$Z_c(4020)$] = 4023 ± 3 MeV $\Gamma[Z_c(4020)]$ = 8 ± 4 MeV

DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

 $L_{c}(4020)$

- Charged charmonium-like structure above D*D* mass threshold
- Prefers to transition to charmonium spin singlet (h_c) over spin triplet (J/Ψ)
- J^P unknown

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

- Correlation with Y(4360) or Y(4260) is unclear
- If structure in πh_c is the same as that in $D^*\overline{D^*}$, then ratio of $D^*\overline{D^*}$ to πh_c partial widths is 12±5 : 1
- Qualitatively similar to $Z_c(3900)$

16

 Study e⁺e⁻→π⁰π⁰h_c at 4.23, 4.26, and 4.36 GeV

DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Observation of $e^+e^- \rightarrow \pi^0 \pi^0 h_c(1P)$

exotics in leptonic machines 2014/5/25

²²⁰ ^Bthe^m spinⁿ parity of the $Z_c(4020)^0$ is 1⁺, a phase space factor pq^3 is considered in the partial width,

• Confirm well-established decay of $Y(4260) \rightarrow \pi^{\pm}\pi^{\mp}J/\psi$

- Confirm well-established decay of $Y(4260) \rightarrow \pi^{\pm}\pi^{\mp}J/\psi$
 - observe new structure in $\pi^{\pm}J/\psi$ mass spectrum
 - mass of about 3900 MeV; also decays to DD*
 - heavy and charged: can't be charm anti-charm

- Confirm well-established decay of $Y(4260) \rightarrow \pi^{\pm}\pi^{\mp}J/\psi$
 - observe new structure in $\pi^{\pm}J/\psi$ mass spectrum
 - mass of about 3900 MeV; also decays to DD*
 - heavy and charged: can't be charm anti-charm
- Try to establish $Y(4260) \rightarrow \pi^{\pm}\pi^{\mp}h_c$ and $Y(4260) \rightarrow \pi^0\pi^0h_c$
 - no clear Y(4260)-like structure in $e^+e^- \rightarrow \pi^{\pm}\pi^{\mp}h_c$ cross section

- Confirm well-established decay of $Y(4260) \rightarrow \pi^{\pm}\pi^{\mp}J/\psi$
 - observe new structure in $\pi^{\pm}J/\psi$ mass spectrum
 - mass of about 3900 MeV; also decays to DD*
 - heavy and charged: can't be charm anti-charm
- Try to establish $Y(4260) \rightarrow \pi^{\pm} \pi^{\mp} h_c$ and $Y(4260) \rightarrow \pi^0 \pi^0 h_c$
 - no clear Y(4260)-like structure in $e^+e^- \rightarrow \pi^{\pm}\pi^{\mp}h_c$ cross section
 - observe new structures in $\pi^{\pm}h_{c}$ and $\pi^{0}h_{c}$ mass spectra
 - both have a mass of about 4020 MeV; consistent with isovector triplet of states; may decay to D*D*
 - heavy and charged: can't be charm anti-charm

- Confirm well-established decay of Y(4260) $\rightarrow \pi^{\pm}\pi^{\mp}J/\psi$
 - observe new structure in $\pi^{\pm}J/\psi$ mass spectrum
 - mass of about 3900 MeV; also decays to DD*
 - heavy and charged: can't be charm anti-charm
- Try to establish $Y(4260) \rightarrow \pi^{\pm} \pi^{\mp} h_c$ and $Y(4260) \rightarrow \pi^0 \pi^0 h_c$
 - no clear Y(4260)-like structure in $e^+e^- \rightarrow \pi^{\pm}\pi^{\mp}h_c$ cross section
 - observe new structures in $\pi^{\pm}h_{c}$ and $\pi^{0}h_{c}$ mass spectra
 - both have a mass of about 4020 MeV; consistent with isovector triplet of states; may decay to D*D*
 - heavy and charged: can't be charm anti-charm
- What does this tell us about Y(4260)? Don't know.
 - Search for more Y(4260) decay modes, like transitions to (un)conventional charmonium.

Bloomington

- well-established neutral state just at or below D⁰D^{*0} threshold
 - discovered by Belle in *B* decay [PRL 91, 262001 (2003)]
- decay to $(\pi^+\pi^-)_{\rho} J/\psi$ is atypical of conventional charmonium
- popular explanation: bound $D^0 \overline{D^{*0}}$ "molecular" state
- recent developments:
 - J^{PC} = I⁺⁺ firmly established by LHCb [PRL 110, 222001 (2013)]
 - LHCb observes radiative transition to ψ' (arXiv:1404.0275)
 - BESIII observes production in $e^+e^- \rightarrow \gamma X(3872)$

M. R. Shepherd CAP Congress, Sudbury June 19, 2014

e⁺e⁻→γX(3872)

BESIII Collaboration, PRL 112, 092001 (2014)

- search for $\gamma X(3872)$ with $X(3872) \rightarrow \pi \pi J/\psi$ at $E_{cm} = 4.23$ GeV, 4.26 GeV, and 4.36 GeV
- summed over all data X(3872) significance: 6.3σ
- production in Y(4260) decay suggestive but not conclusive
 - if from Y(4260):

$$\frac{\mathcal{B}(Y(4260) \to \gamma X(3872))}{\mathcal{B}(Y(4260) \to \pi^+ \pi^- J/\psi)} \approx 0.1$$

UI DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

- Search for transitions of Y(4260)to the χ_{cJ} states via the emission of a vector meson
- Need to observe peak in the $e^+e^- \rightarrow \omega \chi_{c0}$ cross section that matches the Y(4260) lineshape

DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

- observation of ωχ_{c0} production at 4230 MeV and 4260 MeV
- no evidence for $\omega \chi_{c0}$ at 4360 MeV
- no evidence for $\omega \chi_{c1,2}$ at 4230 or 4260 MeV

M. R. Shepherd CAP Congress, Sudbury June 19, 2014

College of Arts and Sciences Bloomington

June 19, 2014

College of Arts and Sciences Bloomington

- Measuring (and understanding) transitions between states is essential
- Remaining experimental challenges:
 - explore all possible decay modes of new states
 - establish Y(4260) or Y(4360) as a definitive source of transition in e⁺e⁻ collisions
- More data at a variety of E_{cm} may shed light on problem

UI DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Y(4260) Y(4360)

- Y(4260) is a strong source of ππJ/ψ in e⁺e⁻ collisions
 - about 1/4 of rate is through $\pi^{\pm}Z_{c}(3900)^{\mp}$
- source of $\pi\pi h_c$ in e+e- collisions not conclusive
 - about 1/5 of the rate is through $\pi^{\pm}Z_{c}(4020)^{\mp}$
- observation of $e^+e^- \rightarrow \gamma X(3872)$, perhaps via $Y(4260) \rightarrow \gamma X(3872)$
- observation of $e^+e^- \rightarrow \omega X_{c0}$, but likely not through Y(4260)

nature of Y states remains unclear

Bloomington

Y(4260) Y(4360)

- Y(4260) is a strong source of ππJ/ψ in e⁺e⁻ collisions
 - about 1/4 of rate is through $\pi^{\pm}Z_{c}(3900)^{\mp}$
- source of $\pi\pi h_c$ in e+e- collisions not conclusive
 - about 1/5 of the rate is through $\pi^{\pm}Z_{c}(4020)^{\mp}$
- observation of $e^+e^- \rightarrow \gamma X(3872)$, perhaps via $Y(4260) \rightarrow \gamma X(3872)$
- observation of $e^+e^- \rightarrow \omega X_{c0}$, but likely not through Y(4260)

nature of Y states remains unclear

newly observed structures: presence of electric charge rules out conventional charm anti-charm state

 $Z_{c}(3900)^{\pm}$

- narrow charged charmoniumlike structure above (DD*)[±] mass threshold (3876 MeV)
- decays to (DD*)[±] and π[±]J/ψ in ratio of 6±3 : I
- evidence for neutral isospin partner
- decay rate to $\pi^{\pm}h_{c}$ must be at or below the decay rate to $\pi^{\pm}J/\psi$
- $\int^{P} = I^{+}$
- production seems correlated with Y(4260) decay
- no production in $B^{\pm} \rightarrow K^{\pm}Z^{\mp}$ (in contrast to $B \rightarrow KX(3872)$)*

*BaBar Collaboration, PRD 79, 112001 (2009)

(assuming just one object)

- narrow charged charmonium-like structure above D*D* mass threshold (4017 MeV)
- decays to $(D^*\overline{D^*})^{\pm}$ and $\pi^{\pm}h_c$ in ratio of 12±5 : 1
- observation of neutral isospin partner Z_c(4020)⁰
- no apparent decay to (DD*)[±]
- decay rate to $\pi^{\pm}h_{c}$ must dominate $\pi^{\pm}J/\psi$ if it exists
- J^P unknown
- production correlated with Y(4260) and/or Y(4360) decay?

DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences

Bloomington

24

Global Context

- Other charged charmonium-like states:
 - $Z_c(4430)^{\pm} \rightarrow \psi' \pi^{\pm}$ discovered by Belle in 2008, not confirmed by BaBar, but recently confirmed by LHCb (arXiv:1404.1903)
 - $Z_c(4050)^{\pm}$ and $Z_c(4250)^{\pm}$ reported by Belle to decay to $\chi_{c1}\pi^{\pm}$ but not confirmed by BaBar
- Parallels to the bottomonium system: (studied by the Belle Collaboration [PRL 108, 122001 (2012)])
 - An apparent analogue of the Y(4260) exists for *b* quarks with a mass around 10.865 GeV with large decays to $\pi\pi\Upsilon(nS)$ and $\pi\pi h_b(mP)$
 - Observed: $Z_b(10610)^{\pm}$ and $Z_b(10650)^{\pm}$
 - decays to both $\pi h_b(mP)$ and $\pi \Upsilon(nS)$
 - heavy and charged: not just bottom anti-bottom

Summary of Observations

- Clear evidence for narrow structures in $\pi^{\pm}J/\psi$ and $\pi^{\pm}h_c$ spectra whose origin is unknown
 - conspicuously close to $D\overline{D}^*$ and $D^*\overline{D}^*$ thresholds
 - new type of QCD state or dynamically generated structure?
 - one certainty: not conventional charmonium
- Data are slightly suggestive of transitions between mysterious structures
 - $Z_c(3900)^{\pm}$ appears to be correlated with Y(4260) decay
 - ... but source of $\pi\pi h_c$ and $Z_c(4020)^{\pm,0}$ is not clear
 - possible radiative transition: $Y(4260) \rightarrow \gamma X(3872)$
 - ... but $\omega \chi_{c0}$ does not seem to be a product of Y(4260) decay
- Strong similarities between charmonium and bottomonium system
- Expect to hear more from BESIII in the near future!

College of Arts and Sciences

Bloomington