ENTANGLEMENT ENTROPY IN QUANTUM FLUIDS & GASES
Measuring quantum correlations in the spatial continuum

Chris Herdman
UVM

Stephen Inglis
U Waterloo / LMU

P.N. Roy
U Waterloo

Roger Melko
U Waterloo

arXiv:1404.7104

Adrian Del Maestro
University of Vermont

2014 CAP Congress
Entanglement is a resource for quantum information processing necessary to provide an exponential speed-up over classical computation

\[O \left(e^{1.9 \frac{1}{3} (\log N)^{1/3}} (\log \log N)^{2/3} \right) \rightarrow O \left((\log N)^{3} \right) \]

J. Yin et al., Nature 488, 185 (2012)
Detection and classification of quantum states of matter

area law

entanglement scales with the boundary size

\[S(A) \sim \ell^{d-1} \]

Detection and classification of quantum states of matter

Area Law

Entanglement scales with the boundary size

\[S(A) \sim \ell^{d-1} \]

2d Topological Spin Liquid

\[S(A) = \ell - \gamma \]

(1+1) Conformal Field Theory

\[S = \frac{c}{3} \log \left(\frac{L}{\pi a} \sin \frac{\pi \ell}{L} \right) + c_1 \]

Entanglement in quantum fluids and gases

Theoretical work has focused on systems with discrete Hilbert spaces: qubits, insulating lattice models, ...

Experiments employ the quantum states of ultra-cold atomic gasses and BECs

Observation and manipulation of Dicke states

Ultra high-precision quantum interferometry

Multiparticle entanglement of trapped ions

Ultra high-precision quantum interferometry

T. Monz, et al., PRL 102, 040501 (2009)

Boson sampling

Can we quantify and optimize the entanglement of interacting atoms in the spatial continuum?
Quantifying Entanglement
bipartite Rényi entropies in the spatial continuum

Algorithmic Development
measurement and benchmarking using path integral quantum Monte Carlo

Applications in 1d
interacting bosons and the connection between entanglement and condensate fraction
Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum

Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

Applications in 1d

interacting bosons and the connection between entanglement and condensate fraction
Study systems of quantum fluids and gasses governed by the general many-body Hamiltonian

\[H = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m_i} \nabla^2_i + U_i \right) + \sum_{i<j} V_{ij}, \]

- external potential
- interaction potential
- trapped ions with a periodic lattice potential

J. Wernsdorfer et al. PRA, 81, 043620 (2010)

quantum nanofluids of helium-4

B. Kulchytskyy et al. PRB, 88, 064512 (2013)
Quantifying bipartite entanglement

bipartition into two subsystems: A & B

compute the reduced density matrix by tracing over region B

$$\rho_A = \text{Tr}_B \rho$$

$$\rho \equiv |\Psi\rangle \langle \Psi|$$

Rényi Entanglement Entropy:

$$S_\alpha(\rho_A) = \frac{1}{1 - \alpha} \log \text{Tr} \rho_A^\alpha$$

reduces to von Neumann entropy when $$\alpha \to 1$$

$$S = \text{Tr} \rho_A \log \rho_A$$
Different bipartitions of itinerant bosons

for identical particles in the spatial continuum, various ways to partition ground state

Spatial Bipartition

Constructed from the Fock space of single-particle modes

\[
\left| \Psi \right> = \sum_{n_A, n_B} c_{n_A n_B} \left| n_A \right> \otimes \left| n_B \right>
\]

\[\rho_A \to S(A)\]
Different bipartitions of itinerant bosons

for identical particles in the spatial continuum, various ways to partition ground state

Spatial Bipartition
Constructed from the Fock space of single-particle modes

\[|\Psi\rangle = \sum_{n_A, n_B} c_{n_A n_B} |n_A\rangle \otimes |n_B\rangle \]

\[\rho_A \to S(A) \]

Particle Bipartition
Artificially label a subset of \(n \) particles

\[|\Psi\rangle = |r_1 \cdots r_N\rangle \]

\[\rho_n = \int dr_n \cdots dr_N \langle \Psi | \hat{\rho} | \Psi \rangle \]

\[\rho_n \to S(n) \]
Example: entanglement in the free Bose gas

\[|\text{BEC}\rangle \equiv \frac{1}{\sqrt{N!}} (\phi_0^\dagger)^N |0\rangle \]

Spatial Bipartition

entanglement is non-zero and is generated via number fluctuations

\[S_2(A) \sim \frac{1}{2} \log \ell_A \]

Particle Bipartition

Ground state is already in product-form in first quantized notation

\[S_2(n) = 0 \]

W. Ding and K. Yang, PRA 80, 012329 (2009)
How do interactions change this picture?

“toy” quantum fluid: 1d Bose-Hubbard model

\[H_{\text{BH}} = \sum_j \left[-t \left(b_j^\dagger b_{j+1} + \text{h.c.} \right) + \frac{U}{2} n_j (n_j + 1) - \mu n_j \right] \]

3 types of candidate ground states

\[|\text{BEC}\rangle \equiv \frac{1}{\sqrt{N!}} \left(\phi_0^\dagger \right)^N |0\rangle \]

\[|\text{Mott}\rangle \equiv \prod_j b_j^\dagger |0\rangle \]

\[|\text{Cat}\rangle \equiv \sum_j \frac{1}{\sqrt{L} \sqrt{N!}} \left(b_j^\dagger \right)^N |0\rangle \]

<table>
<thead>
<tr>
<th>State</th>
<th>Particle Entanglement</th>
<th>Spatial Entanglement</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEC</td>
<td>0</td>
<td>1/2 log (L)</td>
</tr>
<tr>
<td>Mott</td>
<td>(L) log 2</td>
<td>0</td>
</tr>
<tr>
<td>Cat</td>
<td>(\log L)</td>
<td>(\log 2)</td>
</tr>
</tbody>
</table>

Can any of this entanglement be put to use?

Accessing entanglement as a resource requires the ability to perform local physical operations on subsystems.

Spatial Entanglement
particle number conservation prohibits direct measurement

Particle Entanglement
inaccessible due to the indistinguishability of particles
Can any of this entanglement be put to use?

Accessing entanglement as a resource requires the ability to perform local physical operations on subsystems.

Spatial Entanglement
particle number conservation prohibits direct measurement

Particle Entanglement
inaccessible due to the indistinguishability of particles

The Entanglement of Particles

\[
E_p (A) \equiv \sum_n P_n S (\rho_{A,n}) \]

\[
\rho_{A,n} \equiv \frac{1}{P_n} \hat{P}_n \rho_{A} \hat{P}_n
\]

\[
E_p(A) < S(A)
\]

\[
E_p(A) > 0 \Rightarrow S(n) > 0
\]

Quantifying Entanglement

bipartite Rényi entropies in the spatial continuum

Algorithmic Development

measurement and benchmarking using path integral quantum Monte Carlo

Applications in 1d

interacting bosons and the connection between entanglement and condensate fraction
Quantifying Entanglement
bipartite Rényi entropies in the spatial continuum

Algorithmic Development
measurement and benchmarking using path integral quantum Monte Carlo

Applications in 1d
interacting bosons and the connection between entanglement and condensate fraction
Path integral ground state quantum Monte Carlo

Description

\[H = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2m_i} \nabla_i^2 + U_i \right) + \sum_{i<j} V_{ij}, \]

Project

a trial wave function onto the ground state

\[|\Psi\rangle = \lim_{\beta \to \infty} e^{-\beta H} |\Psi_T\rangle \]

Configurations

discrete imaginary time worldlines constructed from products of the short time propagator

\[\rho_\tau (R, R') = \langle R | e^{-\tau H} | R' \rangle \]

Observables

an exact method for computing ground state expectation values

\[\langle \hat{O} \rangle = \lim_{\beta \to \infty} \frac{\langle \Psi_T | e^{-\beta H} \hat{O} e^{-\beta H} | \Psi_T \rangle}{\langle \Psi_T | e^{-2\beta H} | \Psi_T \rangle} \]

D. M. Ceperley, RMP 67, 279 (1995)
Computing Rényi entropies in Monte Carlo

Replicate the system

\[B_1 \times B_2 \]
Computing Rényi entropies in Monte Carlo

Replicate the system

B_1 A_1 B_2 A_2

Permute (swap) the subregions

B_1 A_2 B_2 A_1

\[\Pi_A \]
Computing Rényi entropies in Monte Carlo

Replicate the system

\[B_1 \quad \otimes \quad B_2 \quad \rightarrow \quad B_1 \quad \otimes \quad B_2 \]

Permute (swap) the subregions

\[\Pi_A \quad \rightarrow \quad A_2 \quad \otimes \quad A_1 \]

Technology imported from QFT to QMC

For \(\alpha = 2 \) replicas, expectation value of the permutation operator is a measure of the 2nd Rényi entropy.

\[
S_2 = - \log \langle \Pi_A \rangle
\]
Porting to the path integral representation

Break continuous space paths at the center time slice β
Porting to the path integral representation

Break continuous space paths at the center time slice β

The bipartitions only exist at this time slice.
Broken links are in A.

Benchmarking on a non-trivial model

N-Harmonium in 1d
harmonically interacting and confined bosons

\[H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{1}{2} m \omega_0^2 x_i^2 + \frac{1}{2} m \omega_{\text{int}}^2 \sum_{j>i} (x_i - x_j)^2 \right] \]

exact solution can be computed using Wigner quasi-distributions for bosons or fermions

Benchmarking on a non-trivial model

\textbf{N-Harmonium in 1d} \\
harmonically interacting and confined bosons

\[H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{1}{2} m \omega_0^2 x_i^2 + \frac{1}{2} m \omega_{\text{int}}^2 \sum_{j>i} (x_i - x_j)^2 \right] \]

exact solution can be computed using Wigner quasi-distributions for bosons or fermions C. L. Benavides-Riveros, I. V. Toranzo, and J. S. Dehesa, arXiv:1404.4447v1, (2014)

\textbf{QMC Results: Particle Entanglement} C. M. Herdman et al. arXiv:1404.7104
Benchmarking on a non-trivial model

Spatial Entanglement

$B_1 \quad A_1 \quad B_1$

$B_2 \quad A_2$

$N = 2$

$N = 4$

C. M. Herdman et al. arXiv:1404.7104
Benchmarking on a non-trivial model

Spatial Entanglement

The useful entanglement is zero for non-interacting particles and peaks at some value of ω_{int}.

C. M. Herdman et al. arXiv:1404.7104
Quantifying Entanglement
bipartite Rényi entropies in the spatial continuum

Algorithmic Development
measurement and benchmarking using path integral quantum Monte Carlo

Applications to 1d bosons
interactions and the connection between entanglement and condensate fraction
Quantifying Entanglement
bipartite Rényi entropies in the spatial continuum

Algorithmic Development
measurement and benchmarking using path integral quantum Monte Carlo

Applications to 1d bosons
interactions and the connection between entanglement and condensate fraction
Moving towards a physically realizable system

one dimensional short-range interacting bosons

\[
H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{2c}{\sqrt{2\pi\sigma^2}} \sum_{j>i} e^{-|x_i - x_j|^2 / 2\sigma^2} \right]
\]

as \(\sigma \to 0 \) we recover the Lieb-Liniger model of delta-function interacting bosons. E. H. Lieb and W. Liniger, PR 130, 1605 (1963)
Moving towards a physically realizable system

one dimensional short-range interacting bosons

\[
H = \sum_{i=1}^{N} \left[-\frac{\hbar^2}{2m} \frac{d^2}{dx_i^2} + \frac{2c}{\sqrt{2\pi}\sigma^2} \sum_{j>i} e^{-|x_i - x_j|^2/2\sigma^2} \right]
\]

as \(\sigma \to 0 \) we recover the Lieb-Liniger model of delta-function interacting bosons. E. H. Lieb and W. Liniger, PR 130, 1605 (1963)

In the low energy limit, the system can be described via Luttinger liquid theory

1. no phase transitions as a function of interaction strength
2. algebraic decay of all correlation functions

Single particle entanglement is related to the condensate fraction!

The fractional population of the zero-momentum state is experimentally accessible via the momentum distribution experiment.

$S_1 = \log n_0$

$S_{QB} = -\log [n_0^2 + (1 - n_0)^2]$

n_0 is the largest eigenvalue of the one-body density matrix.

determines the “single-copy” entropy: $S_\infty = -\log n_0$

fixes the binary (qubit) entropy: $S_{QB} = -\log [n_0^2 + (1 - n_0)^2]$

$S_\infty \& S_{QB}$ can be used to bound $S_2(n = 1)$.

Bounding entanglement of interacting bosons

\[S_\infty \leq S_{QB} \leq S_2(n = 1) \leq 2S_\infty \quad (n_0 \leq 1/2) \]

\[S_{QB} \leq S_\infty \leq S_2(n = 1) \leq 2S_\infty \quad (n_0 > 1/2) \]
Bounding entanglement of interacting bosons

\[
S_\infty \leq S_{QB} \leq S_2(n = 1) \leq 2S_\infty \quad (n_0 \leq 1/2)
\]

\[
S_{QB} \leq S_\infty \leq S_2(n = 1) \leq 2S_\infty \quad (n_0 > 1/2)
\]
Finite size scaling and universality

Canonical Form
A universal canonical scaling function for particle entanglement entropy

\[S(n, N; a, b) = an \log N + b \]

C.M. Herdman et al. PRB, 89, 140501 (2014)

Tonks-Girardeau limit
nearly perfect data collapse to log scaling for \(N > 8 \)
Can now quantify entanglement in itinerant boson systems in the spatial continuum

Experimental measurement & optimization
Bound entanglement via the condensate fraction and learn how to optimize the functional entanglement that can be transferred to a register for quantum information processing.

Applications to low dimensional quantum field theory
Scaling pre-factor of the one-particle entanglement is related to the Luttinger parameter of the effective field theory.
Computing resources and partners in research

Vermont Complex Systems Center

Calcul Québec

compute • calcul Canada

VACC

XSEDE

Extreme Science and Engineering Discovery Environment