State of the Art of Searches for Dark Matter

- Cosmological Evidence
- Theoretical Paradigms
- Experimental Approaches
- Outlook

V. Zacek, Université de Montréal, CAP Congres 2014

Convincing Evidence for Dark Matter at all Scales!

CMB anisotropy

The Concordance Model

 \rightarrow See talk by M. Dobbs

Dark Matter in Our Galaxy

1kpc = $3.259 \ 10^3$ Ly

$$M(r) = \frac{v_{rot}^2 r}{G}$$

2MASS two Micron All Sky Survey

 $\rho_{DM} \sim 0.3 \ m_p/cm^3$

...only 5-10% of matter is visible!

35

WHAT CAN DARK MATTER BE?

- cannot be baryons (CMB and light element abundance different)
- cannot be charged (CMB different)
- no MACHOS (are not there)
- stable or at least metastable ($\tau > 10$ Gyr)
- must be cold or warm to explain structure
- must clump on small scale (dwarf galaxies M/L ~ 1000)
- no sub-keV particles (unless axions or BE scalar condensates)
- self-interaction constrained ($\sigma/m < 1 \text{ cm}^2\text{g}^{-1}$ by halo structures)

Guidance by theory?

No Lack of Options...

Therory \rightarrow see talk by A. Ritz

The WIMP Miracle

Number density of relics shortly after BB: T >> M

Reduction due to Hubble expansion

DM self annihilation

Boltzmann

 $\frac{dn_x}{dt} = -3Hn_x - n_x^2 \langle \sigma v \rangle (x\bar{x} \to ordinary \ matter) + n_{ord}^2 \langle \sigma v \rangle (ordinary \ matter \to x\bar{x})$

Particle production

- in equilibrium: creation = annihilation
- ordinary particles stay longer in equilibrium

Caveat...asymmetric DM, axions etc \rightarrow different story)

The WIMP Miracle

After freeze out:

 $\Omega_x \sim \frac{0.1 p b}{\langle \sigma v \rangle h^2}$

In order to get:

 $0.17 < \Omega_x < 0.25$

<**ov>** ~ 3x10⁻²⁶ cm³ s⁻¹

...need stable particle which annihilates with electro-weak scale cross-section and e.w. scale mass (100 GeV)

Caveat...asymetric DM, axions etc \rightarrow different story)

Dark Matter Candidates

The Neutralino: The preferred CDM Candidate

- χ_1 can be lightest stable super symmetric particle LSP
- Majorana particle
- Interaction with matter electro-weak
- can provide closure density
- relic population from early BB

 $\chi_1 = N_{11} \tilde{\gamma} + N_{12} \tilde{Z} + N_{13} \tilde{H}_1^0 + N_{14} \tilde{H}_2^0$ "photino" "zino" higgsino" "higgsino"

Mχ 100 Gev - 7 TeV

SUSY structure cosmology

NEUTRALINO INTERACTION CROSS SECTIONS

 $\sigma_A = 4G_F^2 \left(\frac{M_{\chi}M_A}{M_{\chi} + M_{\chi}}\right)^2 C_A F(q^2)$

Spin-dependent

Spin-independent

General form of cross sections:

Enhancement factor

 C_A^{SI} : Spin independent – coherent interaction ∞A^2 C_A^{SD} : Spin dependent interaction $\infty < S_{p,n} >^2$ $F(q^2)$: nucl. form facor \rightarrow important for large q^2 and large A

SPIN DEPENDENT - SPIN INDEPENENT

Spin dependent

Large SD x - sections possible for small SI x-sections !

Spin independent

DIRECT SEARCHES

INDIRECT SEARCHES

χ - CDM ?

ACCELERATOR SEARCHES

ASTROPHYSICAL PROBES

Complementarity !!!

- Discovery of cosmol. WIMP does not prove yet SUSY \rightarrow accelerator searches
- LHC signal does not yet prove CDM discovery \rightarrow (in) direct searches
- Candidate must meet astrophysical constraints

Searches for DM Particles

Production in situ at accelerators

Indirect detection via DM annihilation in Sun, Earth, Galaxy v, γ -rays, anti-protons , positrons

Direct detection in u/g laboratories

ALPHA MAGNETIC SPECTROMETER (AMS)

Search for antimatter Since 2012 installed on ISS E.m. spectrometer 7.5t Supraconducting magnet 1m Ø Range 500 keV – 1 TeV

- April 4, 2013: excess of et announced
- Rate slope decreases > 20 GeV
- implies a heavy DM WIMP
- or a new mechanism of acceleration in pulsars

FERMI (LAT) LARGE AREA TELESCOPE

- HE γ-ray spectrometer
- Launched in 2008

- Nov. 2012 spike at 130 GeV -> gal. center
- Reanalysis: CR induced γ's in earth atm. ?
- Larger systematic uncertainty → no significant feature (2013)

FERMI (LAT) LARGE AREA TELESCOPE

Uncovering a gamma-ray excess at the galactic center

Unprocessed map of 1.0 to 3.16 GeV gamma rays

Known sources removed

- γ rays peaked at gal. center with 7-12 GeV
- Consistent with thermal relics
- Emission distributed $\rho \sim r^{-1.3}$
- Spectrum not consistent w. msec pulsers and other backgrounds

$$\chi \bar{\chi} \to \dots \nu \bar{\nu}$$

 $\chi \bar{\chi} \to \mu^+ \mu^-$

105

MAGIC IN

Formil AT

VERITAS

XX-TT

10

m, [GeV]

Direct Detection of DM Particles

$\sim 10^9$ particles traverse us on earth per second!

Count rate	Summer Winter	• Recoil energies: < 100 keV $(10^{-7} E_{kin})$ (fruit fly
		Rates: << 0.1 count /kgd
		• Annual rate modulation $\approx 5-7\%$
	Recoil energy (keV)	A. Drukier, K. Freese, Spergel PRD 33(86)3495

RECOIL SPECTRA & RATES

eV

Extragalactic stream

$$\langle E_r \rangle \approx 2 \cdot \left(\frac{M_N}{1 GeV}\right) \cdot \left[\frac{M_\chi}{M_\chi + M_N}\right]^2 [k]$$

Could "measure" WIMP mass with several targets!

BACKGROUNDS

Neutron- production by

- μ spallation in det. material
- det. shielding, rock
- U/Th (α,n) reactions in rock
 In det material (<< 1 ppb U/T)

 In det. material (<< 1ppb U/Th required)

(Incomplete) Summary of Detection Activities

Dark Matter Strategies

CRESST

ROSEBUD

Nal Dama/Libra Ar DEAP-3600 Ar/Ne MiniClean Xe Xmass Scintillation Zeplin III Xe Xenon 100 Xe LUX Xe ArDM Ar

DRIFT CS₂ CoGeNT Ge DM-TPC CF₄

Ionization

CaWO₄+

Phonons

 $\begin{array}{ccc} COURE & TeO_2 \\ PICASSO & C_4F_{10} \\ COUPP & CF_3I \\ SIMPLE & CCl_2F \end{array} = PICO$

SuperCDMS Edelweiss

A. Noble ICRC2013

$$R_{0} \cong \frac{403}{A} \left(\frac{GeV}{M_{\chi}} \right) \left(\frac{\rho_{\chi}}{0.3 \ GeV / cm^{3}} \right) \left(\frac{\langle v_{\chi} \rangle}{230 \ km/s} \right) \left(\frac{\sigma_{A}^{SD,SI}}{pb} \right) \frac{counts}{kg \cdot day}$$

SCINTILLATING CRYSTAL DETECTORS

Principle:

- crystals (Nal, Csl), Liquids (Xe, Ar, Ne, CaF₂(Eu)) emit light if hit ∞ radiation
- light collected by photo multipliers ($\epsilon \sim 15\%$) or photo-diodes
- ΔE / photon ~ 15 eV
- light gain ~ 2-8 phe/keV

Background rejection:

• different pulse shape (time constant) for nuclear recoil or e, gamma induced events

Experiments:

DAMA/LIBRA, NAIAD, ANAIS (250 kg Nal), KIMS (100 kg Csl), DM-ICE (17 kg Nal), AMORE (Nal)

DAMA / LIBRA Nal (Gran Sasso)

- 250 kg of Nal crystals
- + 13 annual cycles show a modulation at 8.9σ
- period T=1.00 \pm 0.01 y; A = 0.0195 \pm 0.003 cts/kg/d/keV
- modulation at low energies 2-6 keV
- total exposure 1.17 ton y
- Signal: $M\chi \sim 10$ 50 GeV/c^{2;} $\sigma_{SI} \sim 10^{-6}$ pb

R. Bernabei et al.; PLP 24(1998) 195, R. Cerulli, IDM2012

Drukier Freese e	, Freese, Spo t al. PRD88	rgel PRD86	·		
	WIMP WI	nd V _{II} -	+//		
		1	şun /		
	v ₀ -220k	m/s	1		
Cyg	nus	60°	gal	actic plane	
		00	/		
		1/4	- VII		
		///Dec	ember		
		V			
			http://	www.hep.shef.	ac

DAMA / LIBRA Nal (Gran Sasso)

- 250 kg of Nal crystals
- + 13 annual cycles show a modulation at 8.9σ
- Period T=1.00 \pm 0.01 y; A = 0.0195 \pm 0.003 cts/kg/d/keV
- Modulation at low energies 2-6 keV
- Total exposure 1.17 ton y
- Signal: $M\chi \sim 10$ 50 GeV/c^{2;} $\sigma_{SI} \sim 10^{-6}$ pb

rukier, Freese, Spergel PRD8 reese et al. PRD88	June //
	V × //
	sun
v ₀ ~220km/s	
Cygnus	galactic plane
00	VI
1/	December
V	
	http://www.hon.chof.a

DM - ICE (South-pole)

- Same detector as DAMA
- Addressing diff. systematic effects
- Different background

local muon veto

Opposite µ- modulation

~150 cm

- 17 kg of Na(TI) part of NaIAD (since 2011)
- 2500 m depth in the ice
- Near the center of IceCube for additional veto
- Data transmitted by satellite
- Analysis under way!!
- Next 250 kg on Northern hemisph.

First data: arXiv:1401.4804

GE-IONISATION EXPERIMENTS

Principle:

- High purity Ge- crystals (LN₂ Temperature).
- $\Delta E / e^2$ -ion pair: 3 eV
- low threshold: 0.5 keV_{ee}
- Resolution: 3% @ 10 keV

Background rejection:

- high intrinsic purity
- anti-coincidence veto

ion:

Phys. Lett. B, 195 (1987)

LIMITS ON COLD DARK MATTER CANDIDARS DUBLE FROM AN ULTRALOW BACKGROUND GERMANIUM Sight Rometer Mits S.P. AHLEN^a, F.T. AVIGNONE III^b, R.L. BRODZINSKI^c, A.K. DRUKIER^{d,e}, G. GELMINI^{f,g,1} and D.N. SPERGEL^{d,h}

Experiments: IGEX, COSME, CoGENT, NeCaPSI, TEXONO, MALBEK...

COGENT (SOUDAN-LAB)

- Single 440 g HPGe crystal
- Point contact electrode: $C\downarrow$ low noise
- Optimized for low E, low backg.
- Threshold @ 0.4 keV_{ee}

Last 2 years of data appear flatter...

COGENT (SOUDAN-LAB)

- Single 440 g HPGe crystal
- Point contact electrode: $C\downarrow$ low noise
- Optimized for low E, low backg.
- Threshold @ 0.4 keV_{ee}

SUPERHEATED LIQUIDS

uch easier (

 $\mathbf{00}$

Principle:

- Bubble chamber technique
- $E_{th} \sim 1$ keV for nuclear recoils P_{ext}
- full efficiency for nucl. recoils

Background rejection:

- dE/dx_{Bragg} \rightarrow discriminates recoil nuclei from γ , e, μ !
- gamma rejection better than 10^{10} at E_{rec} = 5 keV
- n rejected by multiple scattering

Experiments:

• SIMPLE, MOSCAB, PICASSO + COUPP = PICO

PICASSO – PICO at SNOLAB

Excellent γ - discrimination

Acoustic $\,\,\alpha$ - recoil discrimination

→ talks by A. Robinson, C. Jackson, C. Amole, R. Podviyanuk, P. Mitra, M. Laurin

PICASSO – PICO at SNOLAB

→ talks by A. Robinson, C. Jackson, C. Amole, R. Podviyanuk, P. Mitra, M. Laurin

LIQUID NOBLE GASES

Principle

- Single phase: LXe,LNe, LAr \rightarrow scintillation
- Dual phase liquid /gas \rightarrow scintillation + ionisation

Background rejection:

- pulse shape discrimination / single phase
- Xe^{*} +Xe recombination \rightarrow UV γ (S1) 10:1 nuclear : electron
- double/phase: part of e⁻ drifted into gas phase
- sec. Ion. in strong field (10kV/cm) \rightarrow delayed scint. γ 's (S2)

Advantages:

- Iarge mass
- Iarge A
- self shielding
- multiple n scatters
- Re-purification
- Good particle ID

Gas	Single phase	Double phase
Xenon	ZEPLIN I, XMASS	ZEPLIN, XENON, LUX
Argon	DEAP, CLEAN	WARP/ DarkSide, ArDM
Neon	CLEAN	SIGN

DEAP 3600 (SNOLAB)

- Detects scintillation light in LAr at 85K
- Threshold ~ 60 keV_r
- Excited dimers of Ar^{*}₂ in singlet/ triplet states
- Different lifetimes and S/T fraction depending on ionisation
- Designed for 10⁹ PSD and 0.2 bkgd. /ton-year

- 3600 kg LAr, 1000 kg fid.
- 50 cm light guides
- 253 PMT's \rightarrow 75% coverage
- Resurfaced in situ (Rn)
- Vessel inside 1 μ m TPB WLS
- Detector in 8m water shield

Installation under way

 \rightarrow talks by A. Hallin, J. Bonat, P. Pasuthip

XENON 100 (Gran Sasso)

- 30 cm drift x 30 cm Ø TPC
- 162 kg LXe (A=131)
- 241 1" PMT
- LXe veto around
- Kr: 19 ppt

2012 Results :

- Fid. Vol. 34 kg 224 days
- 2 events observed after unbldg.
- •1 \pm 0.2 expected
- no events below threshold

Upper limit: 2x10⁻⁹ pb for 55 GeV/c² (90%,C.

Continue data taking \rightarrow 2014

Xe 1t commissioned May 2014

→ Scott Oser's talk!

XENON 100 (Gran Sasso)

- 30 cm drift x 30 cm Ø TPC
- 162 kg LXe (A=131)
- 241 1" PMT
- LXe veto around
- Kr: 19 ppt

LUX at SURF (HOMESTAKE)

- 300kg LXe
- Two phase detector
- Z- position from S1-S2 timing
- 3D imaging (mm resolution)
- Gamma,n background red. By self shielding
- Beta gamma rejection > 99.5%

- Light WIMPS ruled out
- next LZ 6t fid.
 - → Scott Oser's talk!

CRYOGENIC EXPERIMENTS

Principle:

- Crystals (Al₂O₃, Ge, Si, TeO₂, CaWO₄ at sev. mK
- Particle interaction produces ionisation + phonons (heat)
- Energy per phonon ~ meV \rightarrow FWHM 4.5 eV @ 6 keV_x
- Temperature rise measured by semi/superconducting thermometers

- Ionization / scintill. light yield depends on recoiling particle
- Compare phonon with ion. / scintill. Signal
- Surface events suppressed by interleaving ion./phonon sensors
- Potential for backg. free experiments

Experiments:

CDMS, CRESST (scint), ROSEBUD (scint.), CUORE, EDELWEISS,...

CDMS II (SOUDAN)

- 250 g Ge, Si ZIP detectors at 50 mK
- 5 towers w. 6 mod. since Oct. '06
- Total mass 4.5 kg Ge, 1.1 kg Si
- Ionisation + heat + risetime
- γ rejection > 99.9998 %, 99.75 for β's
 - **CDMS II SI** April 2013 \rightarrow 140 kgd
 - 3 ev. , backg. 0.7 ev

superCDMS (SOUDAN)

- 577 kgd \rightarrow July'13
- Low mass search ~ 6GeV
- σ_{SI} < 10⁻⁴² cm² @ 8 GeV
- CDMSII Si /CoGENT disfavored

CDMS Lite

- Luke Neganov amplification $\rightarrow E_{th} < 170 \text{ eV}$
- 0.6 kg sensitivity < 4 GeV

• $\sigma_{SI} \sim 2 \ 10^{-5} \text{ pb}$, $M_w = 8.5 \ \text{GeV/c}^2$

Apply large potential across crystal

 \rightarrow talks by W. Rau, W. Page

CDMS II (SOUDAN)

- 250 g Ge, Si ZIP detectors at 50 mK
- 5 towers w. 6 mod. since Oct. '06
- total mass 4.5 kg Ge, 1.1 kg Si
- ionisation + heat + risetime
- γ rejection > 99.9998 %, 99.75 for β's
 - **CDMS II SI** April 2013 \rightarrow 140 kgd
 - 3 ev. , backg. 0.7 ev

CRESST II (Gran Sasso)

- 300 g crystals of CaWO₄
- Transition edge sensors @10 mK
- Phonon (energy) + light signal
- 3 different targets $\rightarrow M_W \sim$ 12, 25, 50 GeV/c²

C. Strandhagen, IDM 2012 ; arXiv 1109.07020:

- 8 Modules → 730 kgd
- 67 accepted events
- Two solutions:

M1: 25.3 GeV/c² σ_{sl} =1.6x10⁻⁶ pb @ 4.7 σ

M2: 11.6 GeV/c² σ_{sl} =3.7x10⁻⁵ pb @ 4.7 σ

2012: $M1 < 2.5\sigma$ M2 < 1.9 σ

 \rightarrow talk by P. Nadeu

CURRENT STATUS SPIN-INDEPENDENT SECTOR

CAN THESE RESULTS BE MADE COMPATIBLE ?

MA

Proposed sources for DAMA's annual modulation:

- Ambient temperature variation
- μ -flux depends on atm. temperature/gressure
- Spallation neutrons from muchs in rock
- Rn diffusion from tecks may be varying with time
- But so blank runs yet !

Detector Effects?

- Quenching & channeling (directional sensitivity in the crystal))
- Threshold effects, PMT noise?

Due to nature of DM?

- Different exp.diff. sensitivities to candidates
- Isospin violating DM:
- e.g if $f_p = -f_n \rightarrow no Xe effect!$

Astrophysical effects?

- different halo compositions, streams
- \textbf{v}_{χ} and ρ_{χ} different than expected

DIRECTIONAL WIMP DETECTION

Strong day/night modulations
 expected
 Low pressure TPC's CF₄, CS₂
 + DRIFTII (140g) , MIMAC, NEWAGE,
 DMTPC

DMTPC: Nuclear recoil track

SUMMARY SPIN-INDEPENDENT SECTOR

 \rightarrow Talk by S. Oser

SUMMARY SPIN DEPENDENT SECTOR

DIRECT DETECTION & LHC \rightarrow MONO-JETS

Direct searches (non-relativistic)

LHC searches (highly relativisic)

- Tagging by j / γ + E^{miss}
- Search for excess
- Suppose contact interaction
- Relate to direct $\sigma_{\text{SI}},\,_{\text{SD}}$
 - Impressive limits....

...works only well for mediator masses > few TeV

DIRECT DETECTION & LHC \rightarrow SUSY SEARCH

- cMSSM: m₀, m_{1/2}, A₀, tan(β), sign(μ)
- Apply contraints (closure density...)
- + LHC (non)-observational results

- LHC exclusion limits cut deep into cMSSM parameter space
- Add Higgs mass constraints...

 M_W > 500 GeV/c² + small x-sections!

BUT:

- SUSY parameter space large - other models...UED etc

C. Strege, Dark Attack 2012

COMPLEMENTARITY OF SEARCHES

D. Bauer et al.; arXiv: 1305.1605

Effective operator approach:

Bauer+ 2013

THE FUTURE OF DIRECT DM - SEARCHES

Trend towards a few very large experiments....

LUX 350 kg Xe

ArDM 850 kg

^{10 m} XENON 1t

EURECA 0.1 -1t

Super CDMS 0.2 t Ge \rightarrow GEODM 1.5t Ge

DEAP 3.6 t Ar

 \rightarrow Talk by S. Oser

DARWIN 20t Xe / Ar

SUMMARY AND CAVEATS

- Rapid progress in field
- Direct detection most promising
- Complementarity (collider, direct, indirect searches)
- Maybe DM not as simple as thought !
- Light WIMPS theoretically well motivated !
- New paradigms (asym DM, hidden sector, axions...)
- Need different techniques & targets
- Lots of astrophysical uncertainties (halo composition).
-but discovery possible any time!

