Mode Invisibility and Single Photon Detection

Marvellous Onuma-Kalu¹ Robert B. Mann¹ Eduardo Martin-Martinez ^{1 2}

¹Department of Physics and Astronomy University of Waterloo

²Institute for Quantum Computing University of Waterloo

June 16, 2014

Quantum Measurement Problem

Photodetection Process

Photon is destroyed upon detection

Quantum Measurement Problem

Photodetection Process

Photon is destroyed upon detection

Quantum Non-Demolition (QND) Measurement

- Measurement does not change the state of the measured system
- Successive measurements yield the same result

Quantum Non-Demolition (QND) Measurement

- Measurement does not change the state of the measured system
- Successive measurements yield the same result

Seeing a single photon without destroying it

Haroche et al, Nature 400 (1999)

How to measure single photon states in optical cavities

- Use highly off-resonant atomic transition
- Off-resonant \Rightarrow weak coupling between atom-field mode
- ► Non-negligible global phase: Ramsey interferometery

How can we improve on the measurement precision?

- Use a resonant atomic transition
- But wouldn't this make the measurement destructive again?

Mode invisibility

Seeing a single photon without destroying it

Haroche et al, Nature 400 (1999)

How to measure single photon states in optical cavities

- Use highly off-resonant atomic transition
- Off-resonant \Rightarrow weak coupling between atom-field mode
- ► Non-negligible global phase: Ramsey interferometery

How can we improve on the measurement precision?

- Use a resonant atomic transition
- But wouldn't this make the measurement destructive again?

Mode invisibility

Enhancing the optical QND scheme

Onuma-Kalu et al, Phys. Rev. A 88 (2013) 063824

<u>Aim</u>

Can the relative phase difference non-destructively provide information about the unknown state of light?

Weak adiabatic approximation

 The probability that the whole system remains in the same state is approximately unity, i.e,

$$\left|\langle\psi(0)|U(0,T)|\psi(0)\rangle\right|^2 \approx 1. \tag{1}$$

Light state stays the same but for a global dynamical phase

$$|\psi(T)\rangle = U(0,T)|\psi(0)\rangle \approx e^{i\gamma}|\psi(0)\rangle,$$
 (2)

where γ is the phase factor to be determined

Single photon detection

<u>Method</u>

Setup a resonant interaction between single atom and target cavity modes using the Unruh DeWitt model

$$H_{I} = \sum_{\kappa} \frac{\lambda}{\sqrt{k_{\kappa}L}} (\sigma^{+} e^{i\Omega t} + \sigma^{-} e^{-i\Omega t}) (a_{\kappa}^{\dagger} e^{i\omega_{\kappa}t} + a_{\kappa} e^{-i\omega_{\kappa}t}) \sin(k_{\kappa}x(t))$$

Observation

 Strong atom-field interaction evident from the excitation transition probability

$$P_{|e\rangle}(T) = \lambda^2 \left[|I_{-,\kappa}|^2 n + |I_{+,\kappa}|^2 (n+1) + \sum_{\beta \neq \kappa} |I_{+,\beta}|^2 \right]$$
$$I_{\pm,\beta} = \frac{1}{\sqrt{k_\beta L}} \int_0^T dt e^{i(\omega_\beta \pm \Omega)t} \sin[k_\beta x(t)] \quad \text{violates QND technique}$$

Single photon detection

<u>Method</u>

Setup a resonant interaction between single atom and target cavity modes using the Unruh DeWitt model

$$H_{I} = \sum_{\kappa} \frac{\lambda}{\sqrt{k_{\kappa}L}} (\sigma^{+} e^{i\Omega t} + \sigma^{-} e^{-i\Omega t}) (a_{\kappa}^{\dagger} e^{i\omega_{\kappa}t} + a_{\kappa} e^{-i\omega_{\kappa}t}) \sin(k_{\kappa}x(t))$$

Observation

 Strong atom-field interaction evident from the excitation transition probability

$$P_{|e\rangle}(T) = \lambda^{2} \left[|I_{-,\kappa}|^{2} n + |I_{+,\kappa}|^{2} (n+1) + \sum_{\beta \neq \kappa} |I_{+,\beta}|^{2} \right]$$
$$I_{\pm,\beta} = \frac{1}{\sqrt{k_{\beta}L}} \int_{0}^{T} dt e^{i(\omega_{\beta} \pm \Omega)t} \sin[k_{\beta}x(t)] \quad \text{violates QND technique}$$

Mode invisibility technique

- Idea Cancel the largest contribution to transition probability
- ► Effect of interaction through length x ∈ [0, ^L/₂] is canceled in x ∈ [^L/₂, L] before interaction is turned off

Mode invisibility continued

Excitation transition probability

$$P_{|e\rangle}(T) = \lambda^2 \left[|I_{-,\alpha}|^2 n + |I_{+,\alpha}|^2 (n+1) + \sum_{\beta \neq \alpha} |I_{+,\beta}|^2 \right]$$

$$I_{-,\beta} = \frac{[(-1)^{\beta} - 1]L}{(\beta \pi)^{3/2} \nu} = 0, \qquad \beta = 2, 4, \cdots$$

$$P_{|e\rangle}(T) = \lambda^2 \left[|I_{+,\alpha}|^2 (n+1) + \sum_{\beta \neq \alpha} |I_{+,\beta}|^2 \right] \approx 10^{-20}$$

Phase shift on atomic state

Leading order correction to phase factor

$$|\psi_{T}^{(2)}\rangle = -\lambda^{2} \left[n \frac{C_{-,\alpha}}{k_{\alpha}L} + \sum_{\beta \neq \alpha} \frac{C_{+,\beta}^{*}}{k_{\beta}L} + (n+1) \frac{C_{+,\alpha}^{*}}{k_{\alpha}L} \right] |\psi(0)\rangle + |\psi(T)\rangle_{\perp}$$

$$\eta = -i \ln \left(1 - \lambda^2 \left[n \frac{C_{-,\alpha}}{k_{\alpha}L} + \sum_{\beta \neq \alpha} \frac{C_{+,\beta}^*}{k_{\beta}L} + (n+1) \frac{C_{+,\alpha}^*}{k_{\alpha}L} \right] \right),$$
$$C_{\pm,\beta} = \int_0^T dt \int_0^t dt' \ e^{i(\omega_{\beta} \pm \Omega)(t-t')} \sin[k_{\beta}x(t)] \sin[k_{\beta}x(t')].$$

Then phase on atomic state is

$$\gamma = \mathsf{Re}(\eta)$$

Figure : Phase plot as a function of photon number

Interest is to measure difference between phases for different states containing n and n + m photons.

Figure : Phase resolution required to distinguish between n photons and n + m photons.

Interest is to measure difference between phases for different states containing n and n + m photons.

$$\Delta_m \gamma(n) = \gamma(m+n) - \gamma(n)$$

Figure : Phase resolution required to distinguish between n photons and n + m photons.

Visibility factor = $\exp[-|Im(\eta)|]$

Figure : Visibility factor as a function of photon number n

Current work

QND measurement of general states of light

$$\rho_{0} = |\mathbf{g}\rangle\langle\mathbf{g}| \otimes |\zeta, \alpha\rangle_{\kappa}\langle\zeta, \alpha|_{\kappa}$$

Figure : Measurement setup

Squeezed coherent state

$$\begin{aligned} |\alpha,\zeta\rangle = &S(\zeta)D(\alpha)|0\rangle \\ D(\alpha) = &\exp\left(\alpha\hat{a}^{\dagger} - \alpha^{*}\hat{a}\right), \qquad \alpha = |\alpha|e^{i\theta} \\ &S(\zeta) = &\exp\left(\frac{1}{2}\zeta^{*}\hat{a}\hat{a} - \frac{1}{2}\zeta\hat{a}^{\dagger}\hat{a}^{\dagger}\right), \qquad \zeta = re^{i\phi} \end{aligned}$$

- |α| and θ are the amplitude and phase of the coherent operator
- r and ϕ are the amplitude and phase of the squeezed state

Excitation transition probability

$$P_{|e\rangle}^{\alpha,r} = \left[\frac{\lambda^{2}}{k_{\kappa}L}(|I_{-,\kappa}|^{2} + |I_{+,\kappa}|^{2})(\cosh^{2}(r) + \sinh^{2}(r))|\alpha|^{2} - \frac{2\lambda^{2}}{k_{\kappa}L}(|I_{-,\kappa}|^{2} + |I_{+,\kappa}|^{2})\sinh(r)\cosh(r)\operatorname{Re}\left[|\alpha|^{2}e^{i(2\theta - \phi)}\right] + (|I_{-,\kappa}|^{2} + |I_{+,\kappa}|^{2})\frac{\lambda^{2}\sinh^{2}(r)}{k_{\kappa}L} + \sum_{\gamma}\frac{\lambda^{2}|I_{+,\gamma}|^{2}}{k_{\gamma}L}\right] \approx 10^{-21}$$

Phase shift on atomic state is

$$\gamma = \operatorname{Re}\left[-i \ln\left[1 - \lambda^2 \left(\frac{C_{\kappa,\kappa}}{k_{\kappa}L} \sinh^2(r) + \sum_{\gamma} \frac{c_{+,\gamma}}{k_{\gamma}L} + \frac{C_{\kappa,\kappa}}{k_{\kappa}L} (\cosh^2(r) + \sinh^2(r)) |\alpha|^2 - \frac{2}{k_{\kappa}L} C_{\kappa,\kappa} \sinh(r) \cosh(r) \operatorname{Re}\left[|\alpha|^2 e^{i(2\theta - \phi)}\right]\right)\right]$$

Conclusion

- The mode invisibility technique allows for on-resonance QND measurements of single photon states.
- Being on resonance allows us to amplify the phase-shift.
- Not limited to single photon states (squeezed light, QND determination of Wigner function,...)

Future work

Weak measurement of the Wigner function of states of light

Thank you