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Quantum Measurement Problem

» Photodetection Process
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Quantum Non-Demolition (QND) Measurement
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» Measurement does not change the state of the measured
system

» Successive measurements yield the same result



Seeing a single photon without destroying it

Haroche et al, Nature 400 (1999)

How to measure single photon states in optical cavities

> Use highly off-resonant atomic transition
» Off-resonant = weak coupling between atom-field mode

» Non-negligible global phase: Ramsey interferometery

How can we improve on the measurement precision?

» Use a resonant atomic transition

» But wouldn’t this make the measurement destructive again?
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Mode invisibility



Enhancing the optical QND scheme

Onuma-Kalu et al, Phys. Rev. A 88 (2013) 063824
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» Can the relative phase difference non-destructively provide
information about the unknown state of light?



Weak adiabatic approximation

» The probability that the whole system remains in the same
state is approximately unity, i.e,

[(£(0)|U(0, T (O)|* ~ 1. (1)

» Light state stays the same but for a global dynamical phase

[%(T)) = U(0, T)[(0)) ~ €”[2(0)), (2)

where 7y is the phase factor to be determined



Single photon detection

Method

» Setup a resonant interaction between single atom and target
cavity modes using the Unruh DeWitt model
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Observation

» Strong atom-field interaction evident from the excitation
transition probability
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Mode invisibility technique

» |dea— Cancel the largest contribution to transition probability

» Effect of interaction through length x € [0, %] is canceled in
X € [é, L] before interaction is turned off



Mode invisibility continued

Excitation transition probability
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Phase shift on atomic state

» Leading order correction to phase factor
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» Then phase on atomic state is

v = Re(n)
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Figure : Phase plot as a function of photon number



» Interest is to measure difference between phases for different
states containing n and n + m photons.
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» Interest is to measure difference between phases for different
states containing n and n + m photons.

Apy(n) =~(m+n) —~(n)
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Figure : Phase resolution required to distinguish between n photons and
n 4+ m photons.



Visibility factor = exp[—|Im(n)|]

Visibility factor
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Figure : Visibility factor as a function of photon number n



Current work
» QND measurement of general states of light
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Figure : Measurement setup



Squeezed coherent state

|, €) =5(¢)D(a)[0)

D(«) =exp (aéT - a*é), o = |ale’
1 1
S(¢) =exp (Eg*aa - EgaTaT), ¢ = rei

> || and @ are the amplitude and phase of the coherent
operator

» r and ¢ are the amplitude and phase of the squeezed state



Excitation transition probability
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Phase shift on atomic state is
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Conclusion

» The mode invisibility technique allows for on-resonance QND
measurements of single photon states.

> Being on resonance allows us to amplify the phase-shift.

» Not limited to single photon states (squeezed light, QND
determination of Wigner function,...)



Future work

Weak measurement of the Wigner function of states of light
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