Volumetric Reconstruction of the Ionospheric Electron Content Using Automatic Dependent Surveillance Broadcast (ADS-B) Signals

Alex C. Cushley

Dr. Jean-Marc Noël

Royal Military College of Canada

CAP Congress, Sudbury 2014

June 2014

ADS-B

<u>Automatic Dependant Surveillance Broadcast</u>

 Radar flight surveillance is insufficient in high latitude and oceanic airspace;

- ADS-B presents an alternative:
 - Aircraft automatically broadcast state vectors
 - Data shared by aircraft and ground stations.

Benefits of ADS-B

- Surveillance to areas lacking radar coverage.
- Real-time air traffic information in the cockpit.
- Improves ETA and departure times.
- Improves separation standard for all classes of airspace; (80 miles → 5 miles along-track).
- Reduces cost of the ground infrastructure.
- Reduces environmental impact.

Free Aircraft Transmitters

Adapted from 1 second of data provided by Flightradar24

CubeSat Design Mission

" RMCC will demonstrate a technology which has the potential to vastly improve the management of air traffic and reduce green house emissions produced by inefficient flight routes. In order to do this RMCC proposes a microsatellite mission, equipped with an ADS-B receiver. The primary mission will consist of the collection of ADS-B data and transmission of this data to a ground station."

-CIMON Executive Summary - Mission Requirements, 2003

ADS-B Research at RMCC

- FLOAT 1
 Launched May 2009: damaged hard-drive.
- FLOAT 2
 Launched 12 June 2009: 2076 messages
 collected from 3 ADS-B equipped aircraft over
 2.5 hour flight. Comparison with NAV Canada
 yielded 100% detection rate.
- CSDC
 Canadian Satellite Design Competition; two year student design competition with PDR Sept 2011 & CDR Feb 2012.
- FLOAT 3

Launched 21 March 2012: over 51000 messages from 138 unique aircraft over 2.3 hour flight reaching maximum altitude of 95,500ft (~30km).

ADS-B Research at RMCC

MSc Theses:

- -2Lt. Raymond Francis (2009): Detection of ADS-B Using Stratospheric and Orbital Platforms;
- -Maj. Richard Van Der Pryt: Modelling Aircraft ADS-B Signals Received by a Low-Earth-Orbiting Satellite;
- -My work: Tomography using ADS-B

Can-X 7

- -Drag sail de-orbit demonstration mission
- -ADS-B receiver as secondary payload;
- -CDR completed Feb 2013;
- -Launch yet to be brokered;
- -ADS-B proof of concept demonstrator

The ADS-B Network

Faraday Rotation of Signals

 A plane polarized wave parallel to a magnetic field in a plasma suffers a rotation of its plane of polarization;

Faraday Rotation of Signals

$$\Omega = 1/2c (e^{3}/e_{0}m_{e}^{2})1/\omega^{2} \int_{0}^{l} n_{e}b_{z}dl$$

where

$$TEC = \int_{0}^{l} n_{e} dl$$

 Ω : Faraday rotation (radians)

c: speed of light in vacuum

e: charge of an electron

 e_0 : vacuum permitivity

 m_e : mass of an electron

ω: angular frequency

 n_e : electron density

 b_z : z-component of magnetic field (nT)

dl: path length

 Measurements of the rotation yield the total electron density (TEC) integrated over the plasma column or ray path.

$$TEC = \frac{\Omega}{2.63e^{-6}B_{avg}}$$

Rotation of ADS-B Signals

- Plane polarized 1090 MHz radio signal;
- Propagation through ionospheric plasma;
- Earth's magnetic field largely parallel at high latitudes (e.g. Hudson Bay and the Arctic)

ADS-B Signal rotation is proportionate to the:

- Magnitude of Earth's magnetic field (latitude dependence)
- Total ionization of the medium through which the signal propagates

Unique Frequency Selection

Modelling Data

- Raytrace EM-waves in an ionized medium to determine the wave path and polarization state at the satellite receiver;
- Models expected signal received aboard ADS-B equipped satellite.

Ray Density Example

1/10th of ray paths from 3 aircraft to a single satellite

Analysis of Ray Data

Faraday rotation exists and can be converted to slant TEC (STEC)

Computerized Tomography (CT)

- I: Receiver(Rx) intensity
- I_o: Transmitter(Tx intensity)
- λ: Attenuation co-efficient
- d: Distance

From medical physics: CT scan

Extension to 3D

- More sparse ($\sim 150/50000$ pixels =0)
- Under-determined ill-posed problem

Algebraic Reconstruction Technique (ART)

The brightness of pixels intersected by rays changes to allow the ray sum to correspond to

the projection value.

$$N^{k+1} = N^k + \lambda_k \frac{STEC_i - \sum_{j=1}^{\rho} d_{ij}n_j^k}{\sum_{j=1}^{\rho} d_{ij}d_{ij}}D_i$$

 Each pixel density is modified after each iteration allowing the projection through the pixels (DN) to approach the measured projection (STEC).

ART

 Converges quickly, improving iteratively on initial a priori guess.

2D CIT Reconstruction

Raytrace Input Profile->

Relative Density->

2D Reconstruction (no *a priori*)->

3D CIT Reconstruction

Conclusions

- CIT with ADS-B data is feasible.
- Important ionospheric features of latitudinal scales 25-1000km detected.
- In-situ a priori data from another source is required for validation and calibration.
- Minimum data density for reconstruction must be greater than 23.4 rays/degree latitude

Future Work

Parallel processing;

- LAUNCH!
 - Sensor calibration
 - Noise & filters;
 - Constellation (Irid)

- CIT investigations:
 - In-situ a priori data injection from another source (ionosonde-based IRI, radar, etc);
 - Methods of interpolation, filters, forming geometry matrix, algorithm optimization;
 - Automation and GUI.

Questions?¿?

Acknowledgements:

Dr. Noël: Thesis Supervisor; NSERC CRSNG

Dr. Robert Gillies: Ray-trace program.

Motivation for Current Research

Ionospheric tomography using Faraday Rotation of ADS-B Signals

- Awareness of ADS-B receiver importance in space;
- Potential ADS-B payload dual-purpose for science data;
- Current limitations of TEC modelling using dual frequency GPS, ionosondes, radar.
- First inverted CIT application ¿

"If only three percent of flights were equipped with ADS-B and were able to alter their speed and altitude in a manner to increase efficiency, 2.7 million litres of fuel, and emittance of approximately 7200 tons of greenhouse gases would be saved annually." -Rudy Kellar, Navigation Canada Vice President of Operations

Raytrace Input Profile->

Raw reconstruction (no *a priori*)->

Ionospheric Variation-Unknown Relative Units Problem

Sample ADS-B Data

Field	Sample		
Ground receiver ID	"171e09e" : [
aircraft_id - modeS 'hex' latitude	"a96c96",		
longitude	40.593,		
track - degrees, 0-359	-73.4894 <i>,</i>		
altitude - feet	10,		
speed - ground speed in knots	4000, 244,		
squawk - in hex	13089,		
radar_id - internal type - equipment, e.g. B733	254,		
registration	"B752",		
timestamp - time of sample in seconds	"N706TW",		
since 00:00:00 01/01/1970 UTC / GMT	1372636803,		
origin - airport code for departure, e.g.	"SEA",		
KKN	"JFK",		
destination - airport code	"DL1154",		
flight - flight number e.g. DY311	0,		
onground - indication of flight status, 1 for	0, "DAL1154",		
on ground or else 0	0 DALI134 ,		
vspeed - empty in this sample			
callsign - e.g. NAX11S eta - empty in this sample			
reta empty in this sample			

FLAOT 2 Mission Profile

Faraday Rotation

Top: a linear EM-wave as the superposition of the left-hand circular polarized (LHCP) and right-hand circular polarized (RHCP) waves. **Bottom:** after traversing some distance in the plasma the RHCP has returned to its initial orientation after N-cycles, but the LHCP wave has relatively advanced in phase and the plane of polarization is seen to rotate. Adapted from Chen [2006].

Ω Back of Envelope Calculation

TEC (TECU)	Ω _{ADS-B} (°)	Ω _{GPS L1} (°)	Ω _{GPS L2} (°)
1	0.6	0.3	0.5
5	3.1	1.5	2.4
10	6.1	3.0	4.8
20	12.2	6.0	9.6
40	24.4	12.0	19.1

Bavg

ADS-B
 1000km altitu

1000km altitude;

GPS 20200km;

 $B_{avg} = 55639.51nT$

 $B_{avg} = 55099.88nT$

Frequencies:

• ADS-B; λ=0.27m

• GPS L1; $\lambda = 0.19$ m

• GPS L2; $\lambda = 0.24$ m

Sample CT Sinogram

Data amplitude projection as a function of fan rotation angle for Phantom Image

Projection Theorem:

The Fourier Transform of the projection at angle ϕ is the Fourier transform of the attenuation function along ϕ in transform space.

Reconstruction by Back-projection

Fan Sensor Spacing 0.25° vs. 2°

Raytrace Output

Simple Numerical Example

Imaging the grid in four directions gives 12 equations (eg. x1+x2+x3=6);

- Simple algebra requires 9 independent equations to solve 9 unknowns;
- Equations not independent, 11 used.
- Hence "computer" in CT