Summary:
* Aiming for precision $\text{Br}(\pi \rightarrow e\nu) \sim \pm 0.0006 \times 10^{-4}$
* Searching for Sterile neutrinos (60-129 MeV) $|U_{ei}|^2 < 10^{-8}$
* Data taking completed at the end of 2012
 Analysis underway; first Br result expected in 2014
 Complete analysis in 2015
* Also measured direct muon capture to atomic states

IPP Meeting Sudbury June 2014
$\pi \rightarrow e\nu$ Branching Ratio

$$R_{e/\mu}^{th} = \frac{\Gamma(\pi \rightarrow e\nu + \pi \rightarrow e\nu\gamma)}{\Gamma(\pi \rightarrow \mu\nu + \pi \rightarrow \mu\nu\gamma)} = 1.2352(1) \times 10^{-4} \quad \text{Cirigliano, Rosell 2007}$$

Experimental status:

$R_{\text{exp}} = 1.2265(34)(44) \times 10^{-4}$ (TRIUMF, 1992)

$1.2346(35)(36) \times 10^{-4}$ (PSI, 1993)

PIENU Precision goal: (0.0006×10^{-4})

Search for BSM physics:

- Mass scales up to 1000 TeV (Pseudoscalars)
 - Charged Higgs,
- $e-\mu$ Universality
- Sterile neutrinos

(Another topic: Direct muon capture to atomic states)
$e\mu$ Universality Tests

<table>
<thead>
<tr>
<th>Mode</th>
<th>g_e/g_μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi \rightarrow e\nu / \pi \rightarrow \mu\nu$</td>
<td>0.9979 ± 0.0016</td>
</tr>
<tr>
<td>$K \rightarrow e\nu / K \rightarrow \mu\nu$</td>
<td>1.0022 ± 0.0018</td>
</tr>
<tr>
<td>$\tau \rightarrow e\nu\nu / \tau \rightarrow \mu\nu\nu$</td>
<td>0.9980 ± 0.0015</td>
</tr>
<tr>
<td>ν_e / ν_μ scattering</td>
<td>1.10 ± 0.05</td>
</tr>
<tr>
<td>W decays</td>
<td>0.999 ± 0.011</td>
</tr>
</tbody>
</table>

- ± 0.0003 PIENU/PEN
- ± 0.0010 NA62/TREK
- Belle II
TRIUMF PIENU

Measure Energy and time in a precision crystal spectrometer

Fit time spectra simultaneously
- π-eU, π-µ-e, πDIF, old µ
- radiative π decays
- π + old µ
-(µDIF)
Suppress Backgrounds, Make small systematic corrections for NaI lineshape and other tiny effects.

Response function measurements showed up photo-nuclear n emission.

Background Suppression
- Suppress π-μ-ν background with target energy
- Remove πDIF background with track angles
- Correct for selection bias

Target Energy

Kink Angle

$\pi^+ \rightarrow e^+ \nu$

Decays in Flight Events
PIENU: Summary of Expected Uncertainties

<table>
<thead>
<tr>
<th>Source</th>
<th>Old TRIUMF</th>
<th>PIENU Goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td>0.0028</td>
<td>0.0005</td>
</tr>
<tr>
<td>Low-energy tail</td>
<td>0.0025</td>
<td>0.0003</td>
</tr>
<tr>
<td>Acceptance corrections</td>
<td>0.0011</td>
<td>0.0003</td>
</tr>
<tr>
<td>Pion lifetime</td>
<td>0.0009</td>
<td>0.0002</td>
</tr>
<tr>
<td>Other</td>
<td>0.0011</td>
<td>0.0003</td>
</tr>
<tr>
<td>Total</td>
<td>0.0047</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

**Current PIENU
Result For Sterile Neutrinos:**

![Graph showing neutrino mass distribution](image)