HIGH-PRECISION HALF-LIFE MEASUREMENTS FOR THE SUPERALLOWED BETA EMITTER ¹⁰C

MICHELLE DUNLOP UNIVERSITY OF GUELPH CAP - JUNE 16 2014

WHY SUPERALLOWED FERMI BETA DECAY?

Can test fundamental properties of the electroweak interaction:

- Use Ft measurements (T_{1/2}, Q-value, BR) to test CVC hypothesis
- Test CKM unitarity by constraining Vud
- Test for possible extensions to the electroweak theory

WHY ¹⁰C? One of the 10 high-precision T=1 superallowed emitters • Lightest of them all

Low-Z superallowed emitters most sensitive to the presence of fundamental weak scalar currents

 $Ft \propto 1/Q$

¹⁰C AND ¹⁴O DECAY SCHEMES $T_{1/2} = 70.6$ seconds $T_{1/2} = 19.3$ seconds 140 ¹⁰C β ß 0+ 0+ 0.06% 1.5% 10**B** 14N 0+ 99.3% 98.5% 0.6% 1022 keV . 0+ 718 keV 2312 keV γ-ray γ-ray

$\begin{tabular}{l} $^{10}CAND $^{14}ODECAY SCHEMES$ \\ $T_{1/2}$ = 19.3 seconds \end{tabular} T_{1/2}$ = 70.6 seconds \end{tabular}$

DISCREPANCIES BETWEEN HALF-LIFE MEASUREMENTS

¹⁰C measurements $\beta: T_{1/2} = 19.307(4) \text{ s}$ $\gamma: T_{1/2} = 19.290(12) \text{ s}$ Differ by ~1.4 σ

Effect also seen in ¹⁴0 measurements

 β : T_{1/2} = 70.648(19) s γ : T_{1/2} = 70.598(17) s Differ by ~2.6 σ

FT VALUES Ft value using half-life obtained via γ measurements

FT VALUES Ft value using half-life obtained via β measurements

EXPERIMENTAL OVERVIEW

Performed in the ISAC hall at TRIUMF

NiO target used to obtain CO+ ions

Beams of ¹⁰C¹⁶O delivered to the 8π and GPS detectors
Beam rates of ~1.75x10⁵ ions/s achieved

Beams of ¹⁰C delivered to the GPS detector
Beam rates of ~1.0x10⁴ atoms/s achieved

Y DETECTOR THE 8п SPECTROMETER

Spherical array of 20 Compton-suppressed HPGe detectors

Detects emitted gamma-ray from the excited daughter states

β DETECTORS THE ZERO-DEGREE SCINTILLATOR

Fast plastic scintillator located directly behind the implantation site of the 8π spectrometer

Directly detects β **particles**

β DETECTORS THE GPS DETECTOR

4π proportional gas counter

Directly detects β **particles**

GPS DATA COLLECTION

- Data collected with 2 independent multichannel scalers (MCS)
- Fixed dead-times applied to each MCS

Data was collected in cycles mode:

- Beam implanted on the tape
- Tape moved into the gas counter
- Measure the decay for ~ 9 minutes
 - ie. ~30 half-lives (T_{1/2} = 19.3 s)

Correct the raw data, accounting for dead-time applied

Correct the raw data, accounting for dead-time applied Fit the data with:

Exponential decay of the primary nucleus (¹⁰C)

Correct the raw data, accounting for dead-time applied Fit the data with:

- Exponential decay of the primary nucleus (¹⁰C)
- Exponential decay of a contaminant (¹³N)

Intensity of ~200-250 molecules/s

Correct the raw data, accounting for dead-time applied Fit the data with:

- Exponential decay of the primary nucleus (¹⁰C)
- Exponential decay of a contaminant (¹³N)

Correct the raw data, accounting for dead-time applied Fit the data with:

- Exponential decay of the primary nucleus (¹⁰C)
- Exponential decay of a contaminant (¹³N)
- A constant background

Correct the raw data, accounting for dead-time applied Fit the data with:

- Exponential decay of the primary nucleus (¹⁰C)
- Exponential decay of a contaminant (¹³N)
- A constant background

8II/ZDS DATA COLLECTION

ZDS data collected with 6 independent multichannel scalers (MCS)

 8π measures the energy of the γ -rays

Data was collected in cycles mode:

Beam implanted on the tape already within the detector

Measure the decay for ~ 9 minutes

Correct the raw data, accounting for dead-time applied Fit the data with:

- Exponential decay of the primary nucleus (¹⁰C)
- Exponential decay of a contaminant (¹³N)
- A constant background

8IL EXPERIMENTAL RESULTS

 $T_{1/2} = 19.3$ seconds

Correct the raw data and sum all 20 HPGe detectors

Correct the raw data and sum all 20 HPGe detectors Gate on 718 keV photopeak

Correct the raw data and sum all 20 HPGe detectors Gate on 718 keV photopeak and get the corresponding time projection

8IL EXPERIMENTAL RESULTS

Correct the raw data and sum all 20 HPGe detectors Gate on 718 keV photopeak and get the corresponding time projection Dead-time and pile-up correct data Fit the data with:

• Exponential decay of the primary nucleus (¹⁰C) and a constant background

CONCLUSIONS

High-precision ¹⁰C half-life measurement experiments were performed at TRIUMF's ISAC facility

Simultaneous β⁺ and γ-ray measurements performed

Statistical precision of 0.02% (γ) and 0.009% for each β^+ measurement was achieved

Full γ -ray and second β analysis to be completed

University of Guelph

V. Bildstein R. Dunlop A. Diaz Varela A. Radich P. Garrett E. Rand **B.** Hadinia

D. Jamieson A. T. Laffoley C. E. Svensson

TRIUMF

G. C. Ball **B.** Mills T. Ballast J. Park P. Bender M. M. Rajabali A. B. Garnsworthy C. Unsworth **D.** Miller Z. Wang

ACKNOWLEDGEMENTS

G. F. Grinyer — GANIL E. F. Zganjar — Lousiana State University J. R. Leslie — Queen's University **R. A. E Austin & A. Valencik — Saint Mary's University** C. Andreiou & D. Cross — Simon Fraser University

BACKUP SLIDES

FT VALUES Ft value obtained using new (preliminary) T_{1/2} value

