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Lattice simulations are having a broad impact.
A few recent examples are presented here.

fundamental QCD parameters
Higgs decays at LHC and ILC

composite Higgs
CKM matrix
exotic hadrons

dark matter searches
quark gluon plasma

nuclei and hypernuclei

(None of my own publications are mentioned in this presentation.)

http://inspirehep.net/search?p=a%20r.lewis.1


the lattice method

Quantum field theories involve
path integrals throughout spacetime.

On a spacetime lattice,
these integrals become finite sums,∫
d4x → a4

∑
nx

∑
ny

∑
nz

∑
nt

,

and a→ 0 is the continuum limit.

40 years of research by many people
has made a practical tool from this basic idea.
Let’s survey some of the recent phenomenology.



fundamental QCD parameters

The quark masses mq and the strong coupling αs appear in the QCD Lagrangian.

How can you determine mq when quarks are confined within hadrons?

Lattice studies of hadrons determine quark masses precisely.



http://itpwiki.unibe.ch/flag
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Higgs decays at LHC and ILC

The Higgs boson has been discovered.
Does it match the Standard Model exactly?

The High-Luminosity LHC and ILC will measure couplings precisely.
Standard Model calculations are not yet precise enough.

Lattice QCD will compute αs, mb and mc to the required accuracy.



Expected Precision of Higgs Boson Partial Widths within the Standard Model
Lepage, Mackenzie and Peskin, 1404.0319

�mb(10) �↵s(mZ) �mc(3) �b �c �g

current errors [10] 0.70 0.63 0.61 0.77 0.89 0.78

+ PT 0.69 0.40 0.34 0.74 0.57 0.49
+ LS 0.30 0.53 0.53 0.38 0.74 0.65

+ LS2 0.14 0.35 0.53 0.20 0.65 0.43

+ PT + LS 0.28 0.17 0.21 0.30 0.27 0.21
+ PT + LS2 0.12 0.14 0.20 0.13 0.24 0.17

+ PT + LS2 + ST 0.09 0.08 0.20 0.10 0.22 0.09

ILC goal 0.30 0.70 0.60

Table 1: Projected fractional errors, in percent, for the MS QCD coupling and heavy quark
masses under di↵erent scenarios for improved analyses. The improvements considered are:
PT - addition of 4th order QCD perturbation theory, LS, LS2 - reduction of the lattice
spacing to 0.03 fm and to 0.023 fm; ST - increasing the statistics of the simulation by a
factor of 100. The last three columns convert the errors in input parameters into errors on
Higgs couplings, taking account of correlations. The bottom line gives the target values of
these errors suggested by the projections for the ILC measurement accuracies.

are presented in Table 1. This table shows the percent errors we expect in the masses
and coupling from the correlator analysis under various scenarios for improvements:
PT denotes the e↵ect of computing QCD perturbation theory through 4th order. LS
denotes the e↵ect of decreasing the lattice spacing to 0.03 fm. LS2 denotes the e↵ect
of using lattices with 0.03 fm and 0.023 fm lattice spacing. We recall that the stage
LS2 corresponds to an increase in computing power by about a factor of 100. ST
denotes the e↵ect of improving the statistics by a factor of 100. We also show percent
errors for the Higgs couplings to bb, cc, and gg, accounting for correlations among
the errors in the determination of the parameters. The last line of the table gives,
for comparison, the experimental uncertainties in the Higgs boson couplings expected
after the ILC measurements [5].

We find that reducing the lattice spacing to 0.023 fm is su�cient to bring paramet-
ric errors for the Higgs couplings below the errors expected from the full ILC. Adding
4th-order perturbation theory reduces the parametric errors further, to about half of
the expected ILC errors. Adding statistics gives a relatively small further reduction
in the errors.

These error estimates are likely conservative because they assume that there is no
further innovation in LQCD simulation methods. There already are many alterna-
tive lattice methods for extracting the QCD coupling from LQCD simulations: see,
for example, [32,40,41,42,43]. None of these methods involve heavy quark masses
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composite Higgs

Could the Higgs boson be a bound state of some new strong interaction?

QCD-like theories don’t have a light scalar boson, but near-conformal theories can.

Lattice studies of SU(3) gauge theories with 12 fundamental fermions observe a
light composite scalar particle.

Preliminary lattice studies of SU(3) gauge theories with one sextet fermion also
provide hints of a Higgs impostor.

(Fodor, Holland, Kuti, Nogradi and Wong, 1401.2176)

http://arxiv.org/abs/1401.2176


Light composite scalar in twelve-flavor QCD on the lattice
Y. Aoki et al. Phys. Rev. Lett. 111, 162001 (2013)

a large number of different interpolating operators built
from gauge-invariant combinations of gauge links in such a
way that a robust basis for a variational ansatz can be
created [see for example Refs. [34–37]]. We build gauge-
invariant and zero-momentum interpolating operators
O!

GðtÞ with scalar rotational quantum numbers. By using
differently shaped spatial Wilson loops, we construct 32
different basis operators for the scalar glueball. Each
of these operators is smeared at several levels (five or
six), and we obtain a large variational basis O!

GðtÞ,
! ¼ 1; . . . ; 160ð192Þ.

The variational ansatz proves to be successful in extract-
ing a signal for the ground state from vacuum subtracted
cross-correlation matrices of the form

C!"ðtÞ ¼ hO!
GðtÞO"

Gð0Þi$ hO!
GihO"

Gi: (5)

We analyze the correlator after a projection on the eigen-
state corresponding to the smallest mass. Figure 3 shows
the effective mass of such a state for mf ¼ 0:06 on the
L ¼ 24 volume, in comparison with the one obtained from
the fermion bilinear (which has already been shown in
Fig. 2). Remarkably, the asymptotic plateaus from both
operators agree, though the statistical noise is larger in the
gluonic case. The agreement indicates that the gluonic
operator has an overlap with the light scalar state that
couples to the fermion bilinear. On the L ¼ 24 volume,
we estimate the scalar mass mG by fitting the large-time
behavior (t ¼ 6–8) of the correlator, and we obtain mG ¼
0:242ð68Þ at mf ¼ 0:05, mG ¼ 0:246ð79Þ at mf ¼ 0:06,
and mG ¼ 0:28ð12Þ at mf ¼ 0:08. These mG are all lighter
than m# by more than 1 standard deviation, whereas the
statistical errors are large.

Figure 4 presents the flavor-singlet scalar spectrum as a
function ofmf. All themG values are consistent withm$ at
each parameter. For m$ on the largest two volumes at each

mf value, finite size effects are negligible in our statistics.
For a check of consistency with the hyperscaling ofm#, we
fit m$ on the largest volume data at each mf using the

hyperscaling form m$ ¼ CðmfÞ1=1þ% with a fixed % ¼
0:414 estimated from m# [10], which gives a reasonable
value of &2=DOF ¼ 0:12. The fit is shown in Fig. 4. We
remind here that the fitted data points havem#L > 11:5, as
can be checked from Table. I. We also estimate the ratio
m$=m# at each parameter and report it in Table I. All the
ratios are smaller than unity by more than 1 standard
deviation including the systematic error, except the one
at mf ¼ 0:06 on L ¼ 30, as previously explained. A
constant fit with the largest volume data at each mf gives
0.86(3). These results are consistent with the theory being
infrared conformal. Moreover, they do not show an abnor-
mal mf dependence of m$ similar to the one observed in
Ref. [23], by which an effect of an unphysical phase
boundary would have been suspected.
To summarize, we performed the first study of the scalar

flavor-singlet state in Nf ¼ 12 QCD using fermionic and
gluonic interpolating operators. The most striking feature
of the measured scalar spectrum is the appearance of a state
lighter than the # state, as it is shown in Fig. 4. Such a state
appears in both gluonic and fermionic correlators at small
bare fermion mass. Clear signals in our simulations were
possible thanks to the following salient features: (1) Small
taste-symmetry breaking, (2) efficient noise-reduction
methods, (3) large configuration ensembles, and (4) slow
damping of DðtÞ because of a small m$ value.
We regard the light scalar state observed for Nf ¼ 12 in

this study as a reflection of the dilatonic nature of the
conformal dynamics, since otherwise the p-wave bound
state (scalar) is expected to be heavier than the s-wave one
(pseudoscalar). Thus, it is a promising signal for a walking
theory, where a similar conformal dynamics in a wide
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FIG. 3 (color online). Fermionic m$ and gluonic mG effective
masses [respectively from correlators in Eqs. (4) and (5)] for
L ¼ 24 and mf ¼ 0:06. The fitted masses are highlighted by
dashed and dotted-dashed lines for the gluonic correlators and
dotted lines for the fermionic one. The systematics effects on the
gluonic mass are not relevant given the larger statistical error.
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FIG. 4 (color online). The mass of the flavor-singlet scalar
meson $ (see Table I) compared to the mass of the pseudoscalar
# state and the mass mG from gluonic operators. Errors are
statistical, and systematics are added in quadrature. The hyper-
scaling curve is described in the text. The triangle and filled
square symbols are slightly shifted for clarity.
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CKM matrix

The Cabibbo-Kobayashi-Maskawa matrix is in the Standard Model Lagrangian.

It describes quark mixing and CP violation, and thus affects the matter-antimatter
asymmetry of the universe.

If the CKM matrix is not unitary, then new physics exists beyond the Standard
Model.

Lattice studies can determine most CKM matrix elements. Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 ∼
 π → `ν K → `ν(π) B → π`ν

D → `ν(π) D(s) → `ν(K) B → D(∗)`ν
Bd ↔ B̄d Bs ↔ B̄s −


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exotic hadrons

All familiar hadrons are quark-antiquark or quark-quark-quark.

Does QCD allow other color-singlet options as well?

Experiments in the past decade provide evidence for more than 20 exotic states.

Are they tetraquarks or meson molecules or hybrid mesons or something else?

Lattice calculations can study this extended particle spectrum.



Evidence for a charged charmonium-like Z+
c from QCD

Prelovsek, Lang, Leskovec and Mohler, 1405.7623
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Figure 3: The spectrum in the channel IG(JPC) = 1+(1+−). a,b same as in Fig. 1,
where the lattice spectrum is based on the full 18×18 correlation matrix; c shows the lattice
spectrum based on the 14×14 correlation matrix without diquark-antidiquark interpolating
fields O4q

1−4; spectra d-g are based on truncated correlation matrices as described in the

figure; spectrum h is based on O4q
1−4 only. The horizontal lines represent energies of the

non-interacting two-particle states (2). Statistical errors on the lattice spectrum are shown.

Conclusions

Our ab-initio QCD calculation provides evidence for the existence of an exotic Z+
c . We find

a candidate for a state with a flavor content c̄cd̄u and quantum numbers IG(JPC) = 1+(1+−)
at a mass m = 4.16± 0.03± 0.16±O(ΓZc) GeV. It could be related to Z+

c (4020)/Z+
c (4025)

recently discovered by BESIII or to Z+
c (4200) found by Belle. Our result further confirms

that the simple classification of hadrons into q̄q mesons and qqq baryons has to be revisited.
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Excited and exotic charmonium spectroscopy from lattice QCD
L. Liu et al. JHEP 07, 126 (2012)
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Figure 16. Charmonium spectrum up to around 4.5 GeV showing only JPC channels in which we
identify candidates for hybrid mesons. Red (dark blue) boxes are states suggested to be members
of the lightest (first excited) hybrid supermultiplet as described in the text and green boxes are
other states, all calculated on the 243 volume. As in Fig. 14, black lines are experimental values
and the dashed lines indicate the lowest non-interacting DD̄ and DsD̄s levels.

multi-meson states [24, 37].

7.2 Exotic mesons and hybrid phenomenology

In Fig. 16 we show the charmonium spectrum for the subset of JPC channels in which,
by considering operator-state overlaps, we identify candidate hybrid mesons. A state is
suggested to be dominantly hybrid in character if it has a relatively large overlap onto an
operator proportional to the commutator of two covariant derivatives, the field-strength
tensor. We note that within QCD non-exotic hybrids can mix with conventional charmonia.
We find that the lightest exotic meson has JPC = 1�+ and is nearly degenerate with the
three states observed in the negative parity sector suggested to be non-exotic hybrids,
(0, 2)�+, 1��. Higher in mass there is a pair of states, (0, 2)+�, and a second 2+� state
slightly above this. Not shown on the figures, an excited 1�+ appears at around 4.6 GeV,
there is an exotic 3�+ state at around 4.8 GeV and the lightest 0�� exotic does not appear
until above 5 GeV.

The observation that there are four hybrid candidates nearly degenerate with JPC =
(0, 1, 2)�+, 1��, coloured red in Fig. 16, is interesting. This is the pattern of states pre-
dicted to form the lightest hybrid supermultiplet in the bag model [38, 39] and the P-wave
quasiparticle gluon approach [40], or more generally where a quark-antiquark pair in S-
wave is coupled to a 1+� chromomagnetic gluonic excitation as shown Table 5. This is not
the pattern expected in the flux-tube model [41] or with an S-wave quasigluon. In addition,
the observation of two 2+� states, with one only slightly heavier than the other, appears
to rule out the flux-tube model which does not predict two such states so close in mass.
The pattern of JPC of the lightest hybrids is the same as that observed in light meson sec-
tor [11, 31]. They appear at a mass scale of 1.2� 1.3 GeV above the lightest conventional

– 25 –
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dark matter searches

Perhaps dark matter is a WIMP (weakly-interacting massive particle).

WIMP detection requires knowledge of WIMP-nucleon interactions.

The low-energy limit of a spin-independent interaction is scalar.

Lattice QCD can determine the necessary matrix elements,

fu,d =
(mu +md)〈N |ūu+ d̄d|N〉

2mN

and fs =
ms〈N |s̄s|N〉

mN

.

Recent lattice results confirm that fs is smaller than some previous estimates.



Scalar strange content of the nucleon from lattice QCD
Junnarkar and Walker-Loud, Phys. Rev. D87, 114510 (2013)

strange quarks (nf ¼ 2) are not included in the average.
To convert results from mshNj!ssjNi to fs, we use mN ¼
938:9 MeV. These results are displayed in Fig. 8.

For the scalar strange content of the nucleon, the current
state of results is such that a simple weighted average of
good (green star) results can not be performed in a mean-
ingful way. As can be seen in Fig. 8, there is good con-
sistency between most of the results. There are not a large
number of orange circle results, so we chose to include all
results in the average. Moreover, we believe despite their
red-square assignment, these results offer valuable infor-
mation which should not be ignored at this time.

A simple weighted average, using the quoted uncer-
tainties as the inverse weights, produces an unbelievably
small final uncertainty. This also ignores the fact that
systematic uncertainties are typically non-Gaussian, and
in the case of lattice QCD calculations, not cleanly sepa-
rable from the statistical uncertainties. Moreover, it does
not account for the quality of the results, judged using the
rubric of the FLAG working group. In an attempt to
include all these issues, the following ad hoc procedure
is used to perform a weighted average of all the results
(presented in Fig. 8):

(i) for each of the Nlatt ¼ 11 results, fi " !"
i , an inde-

pendent random sample is generated with a sample
size of Ndist ¼ 104, drawn from a uniform distribu-
tion between the quoted uncertainties,

for i in rangeðNlattÞ:
for j in rangeðNlattÞ:

fi;j ¼ random:uniformðfi % !%
i ; fi þ !þ

i Þ

(ii) for each random sample, a weighted average of all
results is performed, with weight

wi ¼ yi=!i; (29)

where !i is the symmetric uncertainty, !i ¼ 0:5 '
ð!þ

i þ !%
i Þ from a given result, and we arbitrarily

chose yi ¼ 1, 2, 3 for the red square, orange circle
and green star, respectively. An extra multiplicative
reduction of 0.5 is assigned to results which rely
heavily on SUð3Þ baryon "PT,

for j in rangeðNdistÞ:

!fj ¼
P

i wifi;jP
i0 wi0

:

The choice to weight with 1=!i instead of 1=!2
i is

partly motivated from the non-Gaussian behavior of
the systematic uncertainties that typically dominate
the lattice results.

(iii) the mean and 99% confidence intervals of the
resulting distribution are quoted, see Fig. 8.

A principal concern one should have about this average
is the choice of weights used, Eq. (29). To help judge the
stability of the average presented here, a variety of different
weights are chosen, and the subsequent averages are com-
pared and presented in Table VI. The different choices in
weights result in very consistent values. This is a statement
about the consistency of the values of fs from a variety of
lattice QCD calculations, and it is this striking consistency
that leads us to believe a lattice average with the present
results is meaningful (despite the shortcomings of most of
the individual results). The resulting lattice average, quoted
at the 99% confidence interval to be conservative, is

mshNj!ssjNi ¼ 40" 10 MeV; fs ¼ 0:043" 0:011:

(30)

As was first discussed in Refs. [10,21], there is now
compelling evidence from lattice QCD that the value of
the scalar strange content of the nucleon is substantially
smaller than previously estimated and does not play as
significant a role in dark-matter searches as previously
thought [5,6,8,12]. This has potential implications for the
importance of spin-dependent dark-matter searches as dis-
cussed in Ref. [11]. For a recent review of the lattice QCD

FIG. 8 (color online). Comparison and average of lattice QCD
calculations of fs as described in the text. Only values that have
been extrapolated to the physical quark masses are used. Results
that quote mshNj!ssjNi are normalized by mN ¼ 938:9 MeV to
convert to fs. The quoted uncertainties are taken as the statistical
and systematic uncertainties added in quadrature from a given
reference. nf ¼ 2þ 1 indicates a dynamical strange quark as
well as up and down. SUð3Þ is used to indicate results that rely
heavily on SUð3Þ baryon "PT. Some results are excluded for
various reasons but displayed to demonstrate their consistency:
[29] was updated in [30], the nf ¼ 2 results [22,24] were not
averaged with the nf ¼ 2þ 1, the results in [25] were prelimi-
nary and not extrapolated to the physical pion mass, the results in
[26,36] are preliminary and only exist in a conference proceed-
ings. All excluded results are presented as quoted in the litera-
ture, with no attempt to perform chiral extrapolations.

P.M. JUNNARKAR AND A. WALKER-LOUD PHYSICAL REVIEW D 87, 114510 (2013)
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quark gluon plasma

Heavy ion collisions observe a quark-gluon plasma above the QCD transition tem-
perature, Tc = 154± 9 MeV.

Generalized “chemical potentials” are defined for baryon number B, electric charge
Q and strangeness S.

Derivatives of ln(partition function) provide cumulants,

χBQS
ijk =

1

V 3T

∂i

∂(µB/T )i

∂j

∂(µQ/T )j

∂k

∂(µS/T )k
lnZ

Lattice calculations show the phenomenology between the limits of
(a) a hadron resonance gas (low temperature)
(b) a free quark gas (high temperature)



The last word(s) on CPOD 2013
Karsch, Proc. of Science, CPOD2013 (2013) 046

The last word(s) on CPOD 2013
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Figure 2: Left: The difference of 4th and 2nd order cumulants combined in such a way that they vanish in
an uncorrelated hadron resonance gas (in Boltzmann approximation) [25]. Right: The ratio of two mixed
cumulants that project onto the quantum numbers of strange quarks and yield identical results in a free
strange quark gas.

Strange hadrons thus are either dissolved or strongly modified above T = 160 MeV. This re-
confirms that the pseudo-critical temperature extracted from the chiral susceptibility is a good
indicator for critical behavior in QCD that also reflects deconfining features of the QCD transi-
tion. At present there are no indications that the liberation of light or strange quark degrees of
freedom is delayed and would happen at higher temperatures than the chiral crossover.

4. Freeze-out and higher order cumulants of net charge fluctuations

Higher order cumulants of net charge fluctuations become increasingly sensitive to critical
behavior. However, they ’only’ influence the exponentially small tails of charge distributions. This
makes it difficult to calculated them with high accuracy in lattice QCD as well as to measure
them in heavy ion experiments. Nonetheless, they are appealing because they allow to determine
fundamental features of the QCD transition directly by comparing experimental data with a QCD
calculation. E.g. one may examine ratios of cumulants that are related to mean (M), variance (s2),
skewness (S) or kurtosis (k) of net charge distributions,

MX

s2
X

=
cX

1
cX

2
,

SX s3
X

MX
=

cX
3

cX
1

, kX s2
X =

cX
4

cX
2

, X = B, Q, S . (4.1)

The experimental determination of ratios of cumulants of net charge fluctuations itself is not
a straightforward measurement. One needs to control the influence of experimental cuts and ef-
ficiency corrections. At lower beam energies one may worry whether the exact conservation of
charges in a small volume needs to be taken into account and one may need to correct for finite
volume effects and volume fluctuations [27].

In order to establish the measurement of fluctuations as a credible tool for the analysis of
critical behavior in QCD a first step clearly should be to verify that different cumulant ratios carry
information on thermal behavior that corresponds to a unique point in the QCD phase diagram. It
thus is important to establish that thermal parameters (T,µB) and eventually also (µS,µQ) can be
extracted from cumulant ratios without making reference to model calculations. I.e. for consistency
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[25] Strangeness at high temperatures: from hadrons to quarks,
Bazavov et al., Phys. Rev. Lett. 111, 082301 (2013).
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nuclei and hypernuclei

In principle, nuclei are ultimately described by QCD.

These many-quark systems require large lattice volumes.

Binding energies � ΛQCD are particularly difficult.

If lattice proves itself with known nuclear physics,
then it could be valuable for exotic nuclei and extreme environments.



Light Nuclei and Hypernuclei from Quantum Chromodynamics
in the Limit of SU(3) Flavor Symmetry

Beane et al., Phys. Rev. D87, 034506 (2013)

TABLE XVIII: Summary of the extracted ground-state binding energies of the nuclei and hyper-
nuclei studied in this work.

State A s I J⇡ SU(3) irrep Binding Energy (MeV) ⇠ B/A (MeV)
d (deuteron) 2 0 0 1+ 10 19.5(3.6)(3.1)(0.2) 10

nn (di-neutron) 2 0 1 0+ 27 15.9(2.7)(2.7)(0.2) 8
n⌃ 2 -1 3

2 1+ 10 5.5(3.4)(3.7)(0.0) 3
H (H-dibaryon) 2 -2 0 0+ 1 74.6(3.3)(3.3)(0.8) 37

n⌅ 2 -2 0 1+ 8A 37.7(3.0)(2.7)(0.4) 19
3He, 3H 3 0 1

2
1
2

+ 35 53.9(7.1)(8.0)(0.6) 18
3
⇤H(hypertriton) 3 -1 0 1

2

+ 35 53.9(7.1)(8.0)(0.6) 18
3
⇤H(hypertriton) 3 -1 0 3

2

+ 10 82(8)(12)(1) 27
3
⇤He, 3

⇤H̃, nn⇤ 3 -1 1 1
2

+ 27 69(5)(12)(0) 23
3
⌃He 3 -1 1 3

2

+ 27 55(6)(10)(1) 18
4He 4 0 0 0+ 28 107(12)(21)(1) 27

4
⇤He, 4

⇤H 4 0 0 0+ 28 107(12)(21)(1) 27
4

⇤⇤He, 4
⇤⇤H, nn⇤⇤ 4 0 0 0+ 27 156(16)(21)(2) 39
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FIG. 19: A compilation of the nuclear energy levels, with spin and parity J⇡, determined in this
work.

In the three-body sector, we are able to cleanly identify the J⇡ = 1
2

+
ground state
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concluding remarks

Lattice field theory is rigorous,
systematic,
increasingly precise,
broadly applicable within QCD and beyond.

fundamental QCD parameters, Higgs decays at LHC and ILC, composite Higgs, CKM
matrix, exotic hadrons, dark matter searches, quark gluon plasma, nuclei and hypernuclei

This has been a very truncated glimpse of recent lattice activities.

Next week, more than 400 practitioners will attend the (annual)
32nd International Symposium on Lattice Field Theory.


