Multivariate analysis

Yann Coadou

CPPM Marseille

Thanks to Harrison Prosper, Balàzs Kégl, Jérôme Schwindling, Jan Therhaag
(1) Introduction
(2) Optimal discrimination

- Bayes limit
- Multivariate discriminant
(3) Machine learning
- Supervised and unsupervised learning
- Example

4) Multivariate discriminants

- Random grid search
- Genetic algorithms
- Quadratic and linear discriminants
- Support vector machines
- Kernel density estimation
- Neural networks
- Bayesian neural networks
- Decision trees
(5) Summary

Typical problems in HEP

- Classification of objects
- separate real and fake leptons/jets/etc.
- Signal enhancement relative to background
- Regression: best estimation of a parameter
- lepton energy, \mathbb{E}_{T} value, invariant mass, etc.

Discrimination of signal from background in HEP

- Event level (Higgs searches, ...)
- Cone level (tau-vs-jet reconstruction, ...)
- Lifetime and flavour tagging (b-tagging,)
- Track level (particle identification, ...)
- Cell level (energy deposit from hard scatter/pileup/noise, ...)

Input information from various sources

- Kinematic variables (masses, momenta, decay angles, ...)
- Event properties (jet multiplicity, sum of charges, brightness ...)
- Event shape (sphericity, aplanarity, ...)
- Detector response (silicon hits, $d E / d x$, Cherenkov angle, shower profiles, muon hits, ...)

Most data are (highly) multidimensional

- Use dependencies between $x=\left\{x_{1}, \cdots, x_{n}\right\}$ discriminating variables
- Approximate this n-dimensional space with a function $f(x)$ capturing the essential features
- f is a multivariate discriminant
- For most of these lectures, use binary classification:
- an object belongs to one class (e.g. signal) if $f(x)>q$, where q is some threshold,
- and to another class (e.g. background) if $f(x) \leq q$

For simplicity: 1-dimension case

- Where to place a cut x_{0} on variable x ?

- Optimal choice: minimum misclassification cost at decision boundary $x=x_{0}$

Optimal discrimination

Cost of misclassification

$$
\begin{aligned}
C\left(x_{0}\right) & =C_{S} \int H\left(x_{0}-x\right) p(x, S) d x & & \text { signal loss } \\
& +C_{B} \int H\left(x-x_{0}\right) p(x, B) d x & & \text { background contamination }
\end{aligned}
$$

$C_{S}=$ cost of misclassifying signal as background $C_{B}=$ cost of misclassifying background as signal

- $H(x)$: Heaviside step function
- $H(x)=1$ if $x>0$, 0 otherwise
- Optimal choice: when cost function C is minimum

Minimising the cost

- Minimise
$C\left(x_{0}\right)=C_{S} \int H\left(x_{0}-x\right) p(x, S) d x+C_{B} \int H\left(x-x_{0}\right) p(x, B) d x$ with respect to the boundary x_{0} :

$$
\begin{aligned}
0 & =C_{S} \int \delta\left(x_{0}-x\right) p(x, S) d x-C_{B} \int \delta\left(x-x_{0}\right) p(x, B) d x \\
& =C_{S} p\left(x_{0}, S\right)-C_{B} p\left(x_{0}, B\right)
\end{aligned}
$$

- This gives the Bayes discriminant:

$$
B D=\frac{C_{B}}{C_{S}}=\frac{p\left(x_{0}, S\right)}{p\left(x_{0}, B\right)}=\frac{p\left(x_{0} \mid S\right) p(S)}{p\left(x_{0} \mid B\right) p(B)}
$$

Probability relationships

- $p(A, B)=p(A \mid B) p(B)=p(B \mid A) p(A)$
- Bayes theorem: $p(A \mid B) p(B)=p(B \mid A) p(A)$
- $p(S \mid x)+p(B \mid x)=1$

Optimal discrimination: Bayes limit

Generalising to multidimensional problem

- The same holds when x is an n-dimensional variable:

$$
B D=B \frac{p(S)}{p(B)} \quad \text { where } \quad B=\frac{p(x \mid S)}{p(x \mid B)}
$$

- B is the Bayes factor, identical to the likelihood ratio when class densities $p(x \mid S)$ and $p(x \mid B)$ are independent of unknown parameters

Bayes limit

- $p(S \mid x)=B D /(1+B D)$ is what should be achieved to minimise cost, achieving classification with the fewest mistakes
- Fixing relative cost of background contamination and signal loss $q=C_{B} /\left(C_{S}+C_{B}\right), q=p(S \mid x)$ defines decision boundary:
- signal-rich if $p(S \mid x) \geq q$
- background-rich if $p(S \mid x)<q$
- Any function that approximates conditional class probability $p(S \mid x)$ with negligible error reaches the Bayes limit

How to construct $\mathrm{p}(\mathrm{S} \mid \mathrm{x})$?

- $k=p(S) / p(B)$ typically unknown
- Problem: $p(S \mid x)$ depends on k !
- Solution: it's not a problem...
- Define a multivariate discriminant:

$$
D(x)=\frac{s(x)}{s(x)+b(x)}=\frac{p(x \mid S)}{p(x \mid S)+p(x \mid B)}
$$

- Now:

$$
p(S \mid x)=\frac{D(x)}{D(x)+(1-D(x)) / k}
$$

- Cutting on $D(x)$ is equivalent to cutting on $p(S \mid x)$, implying a corresponding (unknown) cut on $p(S \mid x)$

Machine learning: learning from examples

Several types of problems

- Classification/decision:
- signal or background
- type la supernova or not
- will pay his/her credit back on time or not
- Regression (mostly ignored in these lectures)
- Clustering (cluster analysis):
- in exploratory data mining, finding features

Our goal

- Teach a machine to learn the discriminant $f(x)$ using examples from a training dataset
- Be careful to not learn too much the properties of the training sample
- no need to memorise the training sample
- instead, interested in getting the right answer for new events \Rightarrow generalisation ability

Machine learning and connected fields

(C)Balàzs Kégl

Machine learning: (un)supervised learning

Supervised learning

- Training events are labelled: N examples $(x, y)_{1},(x, y)_{2}, \ldots,(x, y)_{N}$ of discriminating variables x (also called feature variables) and class labels y
- The learner uses example classes to know how good it is doing

Unsupervised learning

- Clustering: find similarities in training sample, without having predefined categories (how Amazon is recommending you books or DVDs...)
- Instead of categories, some sort of reward system. May not even "learn" anything from data, but remembers what triggers reward or punishment
- Not biased by pre-determined classes \Rightarrow may discover unexpected features!

A "giant" neural network

- At Google they trained a 9-layered NN with 1 billion connections
- trained on 10 million 200×200 pixel images from YouTube videos
- on 1000 machines (16000 cores) for 3 days, unsupervised learning
- Sounds big? The human brain has 100 billion $\left(10^{11}\right)$ neurons and 100 trillion $\left(10^{14}\right)$ connections...

What it did

- It learned to recognise faces, one of the original goals
- ... but also cat faces (among the most popular things in YouTube videos) and body shapes

Google's research on building high-level features

Features extracted from such images

- Results shown to be robust to
- colour
- translation
- scaling
- out-of-plane rotation

Finding the multivariate discriminant $\mathrm{y}=\mathrm{f}(\mathrm{x})$

- Given our N examples $(x, y)_{1}, \ldots,(x, y)_{N}$ we need
- a function class $\mathbb{F}=\{f(x, w)\}$ (w : parameters to be found)
- a constraint $Q(w)$ on \mathbb{F}
- a loss or error function $L(y, f)$, encoding what is lost if f is poorly chosen in \mathbb{F} (i.e., $f(x, w)$ far from the desired $y=f(x)$)
- Cannot minimise L directly (would depend on the dataset used), but rather its average over a training sample, the empirical risk:

$$
R(w)=\frac{1}{N} \sum_{i=1}^{N} L\left(y_{i}, f\left(x_{i}, w\right)\right)
$$

subject to constraint $Q(w)$, so we minimise the cost function:

$$
C(w)=R(w)+\lambda Q(w)
$$

- At the minimum of $C(w)$ we select $f\left(x, w_{*}\right)$, our estimate of $y=f(x)$

Machine learning: choice of loss function

Loss function in regression

- Goal: set $f(x, w)$ as close as possible to y
- Therefore, loss increases with difference between $f(x, w)$ and y
- Most widely used loss function is quadratic loss:

$$
L(y, f)=(f(x, w)-y)^{2}
$$

Loss function in classification

- There is no "distance" between classes
- Goal: $f(x, w)$ predicts properly class y
- Usual loss function is one-loss or zero-one loss:

$$
L(y, f)=\mathbb{I}(f(x, w) \neq y)
$$

where indicator function $\mathbb{I}(X)=1$ if X is true, 0 otherwise

Choice of function class: training

Data generated from an unknown function with unknown noise

Choice of function class: training

Constant least squares fit, RMSE $=0.915$

Choice of function class: training

Choice of function class: training

Quadratic least squares fit, RMSE $=0.579$

Choice of function class: training

Cubic least squares fit, RMSE $=0.339$

Choice of function class: training

Poly(6) least squares fit, RMSE $=0.278$

Choice of function class: training

Poly(9) least squares fit, RMSE $=0$

Quality of fit

- Increasing degree of polynomial increases flexibility of function
- Higher degree \Rightarrow can match to more features
- If degree = \# points, polynomial passes through each point: perfect match!

Quality of fit

- Increasing degree of polynomial increases flexibility of function
- Higher degree \Rightarrow can match to more features
- If degree $=\#$ points, polynomial passes through each point: perfect match!

Is it meaningful?

- It could be:
- if there is no noise or uncertainty in the measurement
- if the true distribution is indeed perfectly described by such a polynomial
- ... not impossible, but not very common...

Quality of fit

- Increasing degree of polynomial increases flexibility of function
- Higher degree \Rightarrow can match to more features
- If degree $=\#$ points, polynomial passes through each point: perfect match!

Is it meaningful?

- It could be:
- if there is no noise or uncertainty in the measurement
- if the true distribution is indeed perfectly described by such a polynomial
- ... not impossible, but not very common. . .

Solution: testing sample

- Use independent sample to validate the result
- Expected: performance will also increase, go through a maximum and decrease again, while it keeps increasing on the training sample

Choice of function class: testing

Data generated from an unknown function with unknown noise

Choice of function class: testing

Const. least squares fit, training RMSE $=0.915$, test $\mathrm{RMSE}=1.067$

© Balàzs Kégl

Choice of function class: testing

Linear least squares fit, training RMSE $=0.581$, test RMSE $=0.734$

Choice of function class: testing

Quadr. least squares fit, training $\mathrm{RMSE}=0.579$, test $\mathrm{RMSE}=0.723$

[^0]
Choice of function class: testing

Cubic least squares fit, training RMSE $=0.339$, test RMSE $=0.672$

Choice of function class: testing

Poly(6) least squares fit, training RMSE $=0.278$, test RMSE $=0.72$

Choice of function class: testing

Poly(9) least squares fit, training RMSE $=0$, test RMSE $=46.424$

(c)Balàzs Kégl

Training and test RMSE's for polinomial fits of different degrees

Choice of function class

Non-parametric fit

- Minimising the training cost (here, RMSE) does not work if the function class is not fixed in advance (e.g. fix the polynomial degree): complete loss of generalisation capability!
- But if you do not know the correct function class, you should not fix it! Dilemma...

Capacity control and regularisation

- Trade-off between approximation error and estimation error
- Take into account sample size
- Measure (and penalise) complexity
- Use independent test sample
- In practice, no need to correctly guess the function class, but need enough flexibility in your model, balanced with complexity cost

Multivariate discriminants

(4) Multivariate discriminants

- Random grid search
- Genetic algorithms
- Quadratic and linear discriminants
- Support vector machines
- Kernel density estimation
- Neural networks
- Bayesian neural networks
- Decision trees

Reminder

- To solve binary classification problem with the fewest number of mistakes, sufficient to compute the multivariate discriminant:

$$
D(x)=\frac{s(x)}{s(x)+b(x)}
$$

where:

- $s(x)=p(x \mid S)$ signal density
- $b(x)=p(x \mid B)$ background density
- Cutting on $D(x)$ is equivalent to cutting on probability $p(S \mid x)$ that event with x values is of class S

Which approximation to choose?

- Best possible choice: cannot beat Bayes limit (but usually impossible to define)
- No single method can be proven to surpass all others in particular case
- Advisable to try several and use the best one

Cut-based analysis and grid search

Cut-based analysis

- Simple approach: cut on each discriminating variable
- Difficulty: how to optimise the cuts?

Grid search

- Split each variable in K values
- Apply cuts at each grid point: $x>x_{i}, y>y_{i}$
- Number of points scales with K^{n} : curse of dimensionality

[^1]
RGS

Random grid search example

Comparison to BNN

- Blue: 5-dim Bayesian neural network discriminant (see later)
- Points: each cut point from a 5-dim RGS calculation
- Conclusions:
- RGS can find very good criteria with high discrimination
- but it usually cannot compete with a full-blown multivariate discriminant
- and never outsmarts it

Genetic algorithms

Survival of the fittest

- Inspired by biological evolution
- Model: group (population) of abstract representations (genome/discriminating variables) of possible solutions (individuals/list of cuts)
- Typical processes at work in evolutionary processes:
- inheritance
- mutation
- sexual recombination (a.k.a. crossover)
- Fitness function: value representing the individual's goodness, or comparison of two individuals
- For cut optimisation:
- good background rejection and high signal efficiency
- compare individuals in each signal efficiency bin and keep those with higher background rejection

Genetic algorithms

Algorithm

- Better solutions more likely to be selected for mating and mutations, carrying their genetic code (cuts) from generation to generation
- Algorithm:
(1) Create initial random population (cut ensemble)
(2) Select fittest individuals
(3) Create offsprings through crossover (mix best cuts)
(9) Mutate randomly (change some cuts of some individuals)
(0) Repeat from 2 until convergence (or fixed number of generations)
- Good fitness at one generation \Rightarrow average fitness in the next
- Algorithm focuses on region with higher potential improvement

Gaussian problem

- Suppose densities $s(x)$ and $b(x)$ are multivariate Gaussians:

$$
\operatorname{Gaussian}(x \mid \mu, \Sigma)=\frac{1}{\sqrt{(2 \pi)^{n}|\Sigma|}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)
$$

with vector of means μ and covariance matrix Σ

- Then Bayes factor $B(x)=s(x) / b(x)$ (or its logarithm) can be expressed explicitly:

$$
\ln B(x)=\lambda(x) \equiv \chi^{2}\left(\mu_{B}, \Sigma_{B}\right)-\chi^{2}\left(\mu_{S}, \Sigma_{S}\right)
$$

with $\chi^{2}(\mu, \Sigma)=(x-\mu)^{T} \Sigma^{-1}(x-\mu)$

- Fixed value of $\lambda(x)$ defines a quadratic hypersurface partitioning the n-dimensional space into signal-rich and background-rich regions
- Optimal separation if $s(x)$ and $b(x)$ are indeed multivariate Gaussians

Quadratic discriminant

'Two moons' data

Quadratic discriminant

2-D Gaussian fit for class 1

(c) Balàzs Kégl

Quadratic discriminant

2-D Gaussian fit for class 2

Quadratic discriminant

Discriminant function with Gaussian fits

Linear discriminant

Fisher's discriminant

- If in $\lambda(x)$ the same covariance matrix is used for each class (e.g. $\Sigma=\Sigma_{S}+\Sigma_{B}$) one gets Fisher's discriminant:

$$
\lambda(x)=w \cdot x \quad \text { with } \quad w \propto \Sigma^{-1}\left(\mu_{S}-\mu_{B}\right)
$$

- Optimal linear separation
- Works only if signal and background have different means!
- Optimal classifier (reaches the Bayes limit) for linearly correlated Gaussian-distributed variables

Generalising Fisher discriminant

- Fisher discriminant: may fail completely for highly non-Gaussian densities
- But linearity is good feature \Rightarrow try to keep it
- Idea: data non-separable in n-dim space \mathbb{R}^{n}, but better separated if mapped to higher dimension space $\mathbb{R}^{H}: h: x \in \mathbb{R}^{n} \rightarrow z \in \mathbb{R}^{H}$
- Use hyper-planes to partition higher dim space: $f(x)=w \cdot h(x)+b$
- Example: $h:\left(x_{1}, y_{2}\right) \rightarrow\left(z_{1}, z_{2}, z_{3}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$

Starting simple: separable data

- Consider separable data in \mathbb{R}^{H}, and three parallel hyper-planes:

$$
\begin{aligned}
w \cdot h(x)+b & =0(\text { separating hyper-plane between red and blue) } \\
w \cdot h\left(x_{1}\right)+b & =+1\left(\text { contains } h\left(x_{1}\right)\right) \\
w \cdot h\left(x_{2}\right)+b & =-1\left(\text { contains } h\left(x_{2}\right)\right)
\end{aligned}
$$

- Subtract blue from red:

$$
w \cdot\left(h\left(x_{1}\right)-h\left(x_{2}\right)\right)=2
$$

- With unit vector $\hat{w}=w /\|w\|$: $\hat{w} \cdot\left(h\left(x_{1}\right)-h\left(x_{2}\right)\right)=2 /\|w\|=m$
- Margin m is distance between red and blue planes
- Best separation: maximise margin
- \Rightarrow empirical risk margin to minimise: $R(w) \propto\|w\|^{2}$

Constraints

- When minimising $R(w)$, need to keep signal and background separated
- Label red dots $y=+1$ ("above" red plane) and blue dots $y=-1$ ("below" blue plane)
- Since:

$$
\begin{aligned}
& w \cdot h(x)+b>\quad 1 \text { for red dots } \\
& w \cdot h(x)+b<-1 \text { for blue dots }
\end{aligned}
$$

all correctly classified points will satisfy constraints:

$$
y_{i}\left(w \cdot h\left(x_{i}\right)+b\right) \geq 1, \forall i=1, \ldots, N
$$

- Using Lagrange multipliers $\alpha_{i}>0$, cost function can be written:

$$
C(w, b, \alpha)=\frac{1}{2}\|w\|^{2}-\sum_{i=1}^{N} \alpha_{i}\left[y_{i}\left(w \cdot h\left(x_{i}\right)+b\right)-1\right]
$$

Minimisation

- Minimise cost function $C(w, b, \alpha)$ with respect to w and b :

$$
C(\alpha)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(h\left(x_{i}\right) \cdot h\left(x_{j}\right)\right)
$$

- At minimum of $C(\alpha)$, only non-zero α_{i} correspond to points on red and blue planes: support vectors

Kernel functions

- Issues:
- need to find h mappings (potentially of infinite dimension)
- need to compute scalar products $h\left(x_{i}\right) \cdot h\left(x_{j}\right)$
- Fortunately $h\left(x_{i}\right) \cdot h\left(x_{j}\right)$ are equivalent to some kernel function $K\left(x_{i}, x_{j}\right)$ that does the mapping and the scalar product:

$$
C(\alpha)=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(x_{i}, x_{j}\right)
$$

Example

- $h:\left(x_{1}, y_{2}\right) \rightarrow\left(z_{1}, z_{2}, z_{3}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$

$$
h(x) \cdot h(y)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \cdot\left(y_{1}^{2}, \sqrt{2} y_{1} y_{2}, y_{2}^{2}\right)
$$

$$
=(x \cdot y)^{2}
$$

$$
=K(x, y)
$$

- In reality: do not know a priori the right kernel
- \Rightarrow have to test different standard kernels and use the best one

Real life: non-separable data

- Even in infinite dimension space, data are often non-separable
- Need to relax constraints:

$$
y_{i}\left(w \cdot h\left(x_{i}\right)+b\right) \geq 1-\xi_{i}
$$

 with slack variables $\xi_{i}>0$

- $C(w, b, \alpha, \xi)$ depends on ξ, modified $C(\alpha, \xi)$ as well
- Values determined during minimisation

Basic principle

- Introduced by E. Parzen in the 1960s
- Place a kernel $K(x, \mu)$ at each training point μ
- Density $p(x)$ at point x approximated by:

$$
p(x) \approx \hat{p}(x)=\frac{1}{N} \sum_{j=1}^{N} K\left(x, \mu_{j}\right)
$$

Kernel density estimation (KDE)

Choice of kernel

- Any kernel can be used
- In practice, often product of Gaussians:

$$
K(x, \mu)=\prod_{i}^{n} \operatorname{Gaussian}\left(x_{i} \mid \mu, h_{i}\right)
$$

each with bandwidth (width) h_{i}

Optimal bandwidth

- Too narrow: noisy approximation
- Too wide: loose fine structure
- In principle found by minimising risk function

$$
R(\hat{p}, p)=\int(\hat{p}(x)-p(x))^{2} d x
$$

- For Gaussian densities:

$$
h=\sigma\left(\frac{4}{(n+2) N}\right)^{1 /(n+4)}
$$

- Far from optimal for non-Gaussian densities

Kernel density estimation (KDE)

Example

with Gaussian optimal bandwidth

with optimised bandwidth

Kernel density estimation (KDE)

Why does it work?

- When $N \rightarrow \infty$:

$$
\hat{p}(x)=\int K(x, \mu) p(\mu) d \mu
$$

- $p(\mu)$: true density of x
- Kernel bandwidth getting smaller with N, so when $N \rightarrow \infty$, $K(x, \mu) \rightarrow \delta^{n}(x-\mu)$ and $\hat{p}(x)=p(x)$
- KDE gives consistent estimate of probability density $p(x)$

Limitations

- Choice of bandwidth non-trivial
- Difficult to model sharp structures (e.g. boundaries)
- Kernels too far apart in regions of low point density
- (both can be mitigated with adaptive bandwidth choice)
- Requires evaluation of N n-dimensional kernels

Kernel density estimation (KDE)

'Two moons' data

Kernel density estimation (KDE)

2-D Parzen fit for class $1, h=2$.

Kernel density estimation (KDE)

2-D Parzen fit for class $-1, h=2$.

Kernel density estimation (KDE)

Discriminant function with Parzen fits, $h=2$.

Kernel density estimation (KDE)

Kernel density estimation (KDE)

Kernel density estimation (KDE)

Discriminant function with Parzen fits, $h=0.01$

Kernel density estimation (KDE)

Kernel density estimation (KDE)

Kernel density estimation (KDE)

Discriminant function with Parzen fits, $h=0.25$

KDE: choice of bandwidth

Training and test error rates

(c)Balàzs Kégl

Neural networks

Brief history of artificial neural networks

- 1943: W. McCulloch and W. Pitts explore capabilities of networks of simple neurons
- 1958: F. Rosenblatt introduces perceptron (single neuron wih adjustable weights and threshold activation function)
- 1969: M. Minsky and S. Papert prove limitations of perceptron (linear separation only) and (wrongly) conjecture that multi-layered perceptrons have same limitations
\Rightarrow ANN research almost abandoned in 1970s!!!
- 1986: Rumelhart, Hinton and Williams introduce "backward propagation of errors": solves multi-layered learning
- Today: will only talk about multilayer perceptron (MLP), but there are many recent advances in ANN

Single neuron

- Remember linear separation:

$$
\lambda(x)=w \cdot x=\sum_{i=1}^{n} w_{i} x_{i}+w_{0}
$$

- Boundary at $\lambda(x)=0$
- Replace threshold boundary by sigmoid:

- $\sigma(\lambda)$ is neuron activity, λ is activation
- Neuron behaviour completely controlled by weights $w=\left\{w_{0}, \ldots, w_{n}\right\}$
- Training: minimisation of error/loss function (quadratic deviations, entropy [maximum likelihood]), via gradient descent or stochastic approximation

Training

- Minimise error function $E(w)$
- Gradient descent: $w^{(k+1)}=w^{(k)}-\eta \frac{d E^{(k)}}{d w}$
- $\frac{\partial E}{\partial w_{j}}=\sum_{n=1}^{N}-\left(t^{(n)}-y^{(n)}\right) x_{j}^{(n)}$ with target $t^{(n)}(0$ or 1$)$, so $t^{(n)}-y^{(n)}$ is the error on event n
- All events at once (batch learning):
- weights updated all at once after processing the entire training sample
- finds the actual steepest decent
- takes more time
- or one-by-one (online learning):
- speeds up learning
- useful in HEP because of redundant datasets (large Monte Carlo samples with many similar events)
- may avoid local minima with stochastic component in minimisation
- depends on the order of training events
- One epoch: going through the training data once

Overtraining

- Diverging weights can cause overfitting
- Mitigate by:
- early stopping (after a fixed number of epochs)
- monitoring error on test sample
- regularisation, introducing a "weight decay" term:

$$
\tilde{E}(w)=E(w)+\frac{\alpha}{2} \sum_{i} w_{i}^{2}
$$

Theorem

Let $\sigma($.$) be a non-constant, bounded, and monotone-increasing continuous$ function. Let $\mathcal{C}\left(I_{n}\right)$ denote the space of continuous functions on the n-dimensional hypercube. Then, for any given function $f \in \mathcal{C}\left(I_{n}\right)$ and $\varepsilon>0$ there exists an integer M and sets of real constants $w_{j}, w_{i j}$ wherei $=1, \ldots, n$ and $j=1, \ldots, M$ such that

$$
y(x, w)=\sum_{j=1}^{M} w_{j} \sigma\left(\sum_{i=1}^{n} w_{i j} x_{i}+w_{0 j}\right)
$$

is an approximation of $f($.$) , that is |y(x)-f(x)|<\varepsilon$

Interpretation

- You can approximate any continuous function to arbitrary precision with a linear combination of sigmoids
- Corollary 1: can approximate any continuous function with neurons!
- Corollary 2: a single hidden layer is enough
- Corollary 3: a linear output neuron is enough

Multilayer perceptron: feedforward network

- Neurons organised in layers
- Output of one layer becomes input to next layer

$$
y_{k}(x, w)=\sum_{j=0}^{M} w_{k j}^{(2)} \underbrace{\sigma\left(\sum_{i=0}^{n} w_{j i}^{(1)} x_{i}\right)}_{z_{j}}
$$

Can fit any function: examples

- 1 input (training data), 1 output
- 3 hidden neurons on one hidden layer
(C)Jan Therhaag
$\begin{array}{lll}-------z_{1} & \quad \text { output } \\ -------z_{2} & -. ~ t r a i n i n g ~ d a t a ~\end{array}$

Backpropagation

- Training means minimising error function $E(w)$
- For single neuron: $\frac{d E}{d w_{k}}=(y-t) x_{k}$
- One can show that for a network:

$$
\frac{d E}{d w_{j i}}=\delta_{j} z_{i}, \text { where }
$$

- As before, weights can be regularised:
$\delta_{k}=\left(y_{k}-t_{k}\right)$ for output neurons
$\delta_{j} \propto \sum_{k} w_{k j} \delta_{k}$ otherwise
- Hence errors are propagated backwards

Regularisation

10 hidden nodes

10 hidden nodes and $\alpha=0.04$

- Much less overfitting, better generalisation properties

Getting confused: testing better than training?

- Train on noisy data centred on true value
- Test on no-noise data
- Testing error becomes better: during training, the NN learned the true distribution (average
 of noisy inputs)
- \Rightarrow testing converges
- Example: $\sin (x) / x+\operatorname{rand}(-0.05,+0.05)$
- Of course doesn't work as well if noise is not symmetric

Tricks of the trade

- Preprocess data:
- if relevant, provide e.g. x / y instead of x and y
- subtract the mean because the sigmoid derivative becomes negligible very fast
- normalise variances (close to 0)
- shuffle training sample (order matters in online training)
- Initial random weights should be small to avoid saturation
- Batch/online training: depends on the problem
- Regularise weights to minimise overtraining. May also help select good variables via Automatic Relevance Determination (ARD)
- Make sure the training sample covers the full parameter space
- No rule (not even valid guestimates) about the number of hidden nodes
- A single hidden layer is enough for all purposes, but multiple hidden layers may allow for a solution with fewer parameters

Adding a hidden layer

Introduction

- As name says: Bayesian approach, try to infer functions $f(x)$
- Training sample T of N examples $(x, y)_{1},(x, y)_{2}, \ldots,(x, y)_{N}$ of discriminating variables x and class labels y
- Each point w corresponds to a function $f(x, w)$
- Assign probability density $p(w \mid T)$ to it
- If $p\left(w_{1} \mid T\right)>p\left(w_{2} \mid T\right)$, then associated function $f\left(x, w_{1}\right)$ more compatible with training data T than function $f\left(x, w_{2}\right)$
- Posterior density $p(w \mid T)$ is final result of Bayesian inference
- BNN is the predictive distribution

$$
p(y \mid x, T)=\int p(y \mid x, w) p(w \mid T) d w
$$

where the function class is class of feedforward neural networks with a fixed structure (inputs, layers, hidden nodes, outputs)

In practice

- Take the mean of the predictive distribution:

$$
\begin{aligned}
y(x) & =\int z p(z \mid x, T) d z \\
& =\int f(x, w) p(w \mid T) d w
\end{aligned}
$$

- Why? For classification $p(y \mid x, w)=f(x, w)^{y}(1-f(x, w))^{1-y}$
- for $y=1: p(y \mid x, w)=f(x, w)$
- for $y=0: p(y \mid x, w)=1-f(x, w)$
- so only $f(x, w)$ contributes to the mean
- Example usage:

$$
\begin{aligned}
f(x, w) & =\frac{1}{1+e^{-g(x, w)}} \\
g(x, w) & =b+\sum_{j=1}^{H} v_{j} \tanh \left(a_{j}+\sum_{i=1}^{n} u_{i j} x_{i}\right)
\end{aligned}
$$

Implementation

- Scanning NN parameter space can be daunting
- Can approximate integral in $y(x)$ using Markov chain Monte Carlo method (MCMC)
- Will generate M sample weights w_{1}, \ldots, w_{M} from posterior density $p(w \mid T)$
- $y(x) \approx \frac{1}{M} \sum_{m=1}^{M} f\left(x, w_{m}\right)$
- Use spare subset of MCMC points to avoid correlations
- Start with "reasonable" guesses for parameters (e.g. zero-centred Gaussians)

Example

- points: bin by bin histogram ratio
- thin curves: each $f\left(x, w_{k}\right)$
- thick curve: average, which approximates $D(x)$

Details tomorrow

Summary of MVA techniques

Classifiers

Criteria		Classifiers								
		Cuts	Likeli-	PDERS	H-Matri	Fisher	MLP	BDT	RuleFit	SVM
Performance	no / linear correlations	()	()	()	-	()	()	()	()	()
	nonlinear correlations	-	(2)	()	(\%)	(2)	(-)	()	(-)	(-)
Speed	Training	-	()	()	()	()	-	(2)	-	(2)
	Response	()	()	($/$ / ${ }^{\text {c }}$	(-)	()	()	()	-	\bigcirc
Robust-ness	Overtraining	()	-	-	()	()	(2)	(2)	-	-
	Weak input variables	()	()	(2)	()	()	(-)	(-)	-	(-)
Curse of dimensionality										
Transparency		()	()	-	()	()	(2)	(2)	(2)	(2)

(according to TMVA authors)

- When trying to achieve optimal discrimination one can try to approximate

$$
D(x)=\frac{s(x)}{s(x)+b(x)}
$$

- Many techniques and tools exist to achieve this
- (Un)fortunately, no one method can be shown to outperform the others in all cases.
- One should try several and pick the best one for any given problem
- Multivariate techniques are at work in your everyday life without your knowning and can easily outsmart you for many tasks
- Try this to convince yourself http//mww.phit de/mousegame/index eng hitil

References I

V. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 2nd Edition, 2000
T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer-Verlag, New York, 2nd Edition, 2009
R.M. Neal, Bayesian Learning of Neural Networks, Springer-Verlag, New York, 1996
C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, 2007
M. Minsky and S. Papert, "Perceptrons", M.I.T. Press, Cambridge, Mass., 1969

Ti H.B. Prosper, "The Random Grid Search: A Simple Way to Find Optimal Cuts", Computing in High Energy Physics (CHEP 95) conference, Rio de Janeiro, Brazil, 1995

R W.S. McCulloch \& W. Pitts, "A logical calculus of the ideas immanent in nervous activity", Bulletin of Mathematical Biophysics, 5, 115-137, 1943
F. Rosenblatt, "The Perceptron: A Probabilistic Model for Information Storage \& Organization in the Brain", Psychological Review, 65, pp. 386-408, 1958

References II

青D．E．Rumelhart et al．，＂Learning representations by back－propagating errors＂， Nature vol．323，p．533， 1986

國 K．Hornik et al．，＂Multilayer Feedforward Networks are Universal Approximators＂， Neural Networks，Vol．2，pp 359－366， 1989

國 Y．LeCun，L．Bottou，G．Orr and K．Muller，＂Efficient BackProp＂，in Neural Networks：Tricks of the trade，Orr，G．and Muller K．（Eds），Springer， 1998

國 P．C．Bhat and H．B．Prosper，＂Bayesian neural networks＂，in Statistical Problems in Particles，Astrophysics and Cosmology，Imperial College Press，Editors L．Lyons and M．Ünel， 2005

國 Q．V．Le et al．，＂Building High－level Features Using Large Scale Unsupervised Learning＂，in Proceedings of the 29th International Conference on Machine Learning，Edinburgh，Scotland，UK， 2012

A．Hoecker，P．Speckmayer，J．Stelzer，J．Therhaag，E．von Toerne，and H．Voss， ＂TMVA：Toolkit for Multivariate Data Analysis＂，PoS A CAT 040 （2007） ［physics／0703039］，\＆http：／／tmva．sourceforge．net

[^0]: (C) Balàzs Kégl

[^1]: (c) Harrison Prosper

