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Introduction

Typical problems in HEP

Classification of objects

separate real and fake leptons/jets/etc.

Signal enhancement relative to background

Regression: best estimation of a parameter

lepton energy, /ET value, invariant mass, etc.

Discrimination of signal from background in HEP

Event level (Higgs searches, . . . )

Cone level (tau-vs-jet reconstruction, . . . )

Lifetime and flavour tagging (b-tagging, )

Track level (particle identification, . . . )

Cell level (energy deposit from hard scatter/pileup/noise, . . . )

Yann Coadou (CPPM) — Multivariate analysis ESIPAP’14, Archamps, 29 January 2014 3/65



Introduction

Input information from various sources

Kinematic variables (masses, momenta, decay angles, . . . )

Event properties (jet multiplicity, sum of charges, brightness . . . )

Event shape (sphericity, aplanarity, . . . )

Detector response (silicon hits, dE/dx , Cherenkov angle, shower
profiles, muon hits, . . . )

Most data are (highly) multidimensional

Use dependencies between x = {x1, · · · , xn} discriminating variables

Approximate this n-dimensional space with a function f (x) capturing
the essential features

f is a multivariate discriminant

For most of these lectures, use binary classification:

an object belongs to one class (e.g. signal) if f (x) > q, where q is
some threshold,
and to another class (e.g. background) if f (x) ≤ q

Yann Coadou (CPPM) — Multivariate analysis ESIPAP’14, Archamps, 29 January 2014 4/65



Optimal discrimination

For simplicity: 1-dimension case

Where to place a cut x0 on variable x?

Background density
p(x, B) = p(x|B) p(B)

Signal densitySignal density
p(x, S) = p(x|S) p(S)

x

p 
(x

) 
= 

p(
x
, 
S

) 
+ 

p(
x
, 
B

)

x
0

Optimal choice: minimum misclassification cost at decision boundary
x = x0
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Optimal discrimination

Cost of misclassification

C (x0) = CS

∫
H(x0 − x)p(x , S)dx signal loss

+ CB

∫
H(x − x0)p(x ,B)dx background contamination

CS = cost of misclassifying signal as background
CB = cost of misclassifying background as signal

                             Background
                                  contamination
           Signal loss

x
0

H(x): Heaviside step
function

H(x) = 1 if x > 0,
0 otherwise

Optimal choice: when cost function C is minimum
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Optimal discrimination: Bayes discriminant

Minimising the cost

Minimise
C (x0) = CS

∫
H(x0 − x)p(x ,S)dx + CB

∫
H(x − x0)p(x ,B)dx

with respect to the boundary x0:

0 = CS

∫
δ(x0 − x)p(x , S)dx − CB

∫
δ(x − x0)p(x ,B)dx

= CSp(x0, S)− CBp(x0,B)

This gives the Bayes discriminant:

BD =
CB

CS
=

p(x0,S)

p(x0,B)
=

p(x0|S)p(S)

p(x0|B)p(B)

Probability relationships

p(A,B) = p(A|B)p(B) = p(B|A)p(A)

Bayes theorem: p(A|B)p(B) = p(B|A)p(A)

p(S |x) + p(B|x) = 1
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Optimal discrimination: Bayes limit

Generalising to multidimensional problem

The same holds when x is an n-dimensional variable:

BD = B
p(S)

p(B)
where B =

p(x |S)

p(x |B)

B is the Bayes factor, identical to the likelihood ratio when class
densities p(x |S) and p(x |B) are independent of unknown parameters

Bayes limit

p(S |x) = BD/(1 + BD) is what should be achieved to minimise cost,
achieving classification with the fewest mistakes

Fixing relative cost of background contamination and signal loss
q = CB/(CS + CB), q = p(S |x) defines decision boundary:

signal-rich if p(S |x) ≥ q
background-rich if p(S |x) < q

Any function that approximates conditional class probability p(S |x)
with negligible error reaches the Bayes limit
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Optimal discrimination: using a discriminant

How to construct p(S|x)?

k = p(S)/p(B) typically unknown

Problem: p(S |x) depends on k!

Solution: it’s not a problem. . .

Define a multivariate discriminant:

D(x) =
s(x)

s(x) + b(x)
=

p(x |S)

p(x |S) + p(x |B)

Now:

p(S |x) =
D(x)

D(x) +
(
1− D(x)

)
/k

Cutting on D(x) is equivalent to cutting on p(S |x), implying a
corresponding (unknown) cut on p(S |x)
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Machine learning: learning from examples

Several types of problems

Classification/decision:

signal or background
type Ia supernova or not
will pay his/her credit back on time or not

Regression (mostly ignored in these lectures)

Clustering (cluster analysis):

in exploratory data mining, finding features

Our goal

Teach a machine to learn the discriminant f (x) using examples from
a training dataset

Be careful to not learn too much the properties of the training sample

no need to memorise the training sample
instead, interested in getting the right answer for new events
⇒ generalisation ability
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Machine learning and connected fields

Machine Learning
Statistics

Optimization
Artificial intelligence

Neuroscience

Cognitive science

Signal processing

Information theory

c©Balàzs Kégl
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Machine learning: (un)supervised learning

Supervised learning

Training events are labelled: N examples (x , y)1, (x , y)2, . . . , (x , y)N
of discriminating variables x (also called feature variables) and class
labels y

The learner uses example classes to know how good it is doing

Unsupervised learning

Clustering: find similarities in training sample, without having
predefined categories (how Amazon is recommending you books or
DVDs. . . )

Instead of categories, some sort of reward system. May not even
“learn” anything from data, but remembers what triggers reward or
punishment

Not biased by pre-determined classes ⇒ may discover unexpected
features!

Yann Coadou (CPPM) — Multivariate analysis ESIPAP’14, Archamps, 29 January 2014 12/65



Google’s research on building high-level features

A “giant” neural network

At Google they trained a 9-layered NN with 1 billion connections

trained on 10 million 200×200 pixel images from YouTube videos
on 1000 machines (16000 cores) for 3 days, unsupervised learning

Sounds big? The human brain has 100 billion (1011) neurons and 100
trillion (1014) connections...

What it did

It learned to recognise faces, one of the original goals

. . . but also cat faces (among the most popular things in YouTube
videos) and body shapes

Yann Coadou (CPPM) — Multivariate analysis ESIPAP’14, Archamps, 29 January 2014 13/65



Google’s research on building high-level features

Features extracted from such images

Results shown to be
robust to

colour
translation
scaling
out-of-plane rotation
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Machine learning

Finding the multivariate discriminant y = f(x)

Given our N examples (x , y)1, . . . , (x , y)N we need

a function class F =
{
f (x ,w)

}
(w : parameters to be found)

a constraint Q(w) on F
a loss or error function L(y , f ), encoding what is lost if f is poorly
chosen in F (i.e., f (x ,w) far from the desired y = f (x))

Cannot minimise L directly (would depend on the dataset used), but
rather its average over a training sample, the empirical risk:

R(w) =
1

N

N∑
i=1

L
(
yi , f (xi ,w)

)
subject to constraint Q(w), so we minimise the cost function:

C (w) = R(w) + λQ(w)

At the minimum of C (w) we select f (x ,w∗), our estimate of y = f (x)
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Machine learning: choice of loss function

Loss function in regression

Goal: set f (x ,w) as close as possible to y

Therefore, loss increases with difference between f (x ,w) and y

Most widely used loss function is quadratic loss:

L(y , f ) =
(
f (x ,w)− y

)2

Loss function in classification

There is no “distance” between classes

Goal: f (x ,w) predicts properly class y

Usual loss function is one-loss or zero-one loss:

L(y , f ) = I
(
f (x ,w) 6= y

)
where indicator function I(X ) = 1 if X is true, 0 otherwise
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Choice of function class: training

0 1 2 3 4 5 6
0
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x

y

Data generated from an unknown function with unknown noise

c©Balàzs Kégl
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Choice of function class: training
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Constant least squares fit, RMSE = 0.915
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Choice of function class: training
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Linear least squares fit, RMSE = 0.581
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Yann Coadou (CPPM) — Multivariate analysis ESIPAP’14, Archamps, 29 January 2014 17/65



Choice of function class: training
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Quadratic least squares fit, RMSE = 0.579
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Choice of function class: training
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Cubic least squares fit, RMSE = 0.339
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Choice of function class: training
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PolyH6L least squares fit, RMSE = 0.278
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Choice of function class: training
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PolyH9 L least squares fit, RMSE =0
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Choice of function class

Quality of fit

Increasing degree of polynomial increases flexibility of function

Higher degree ⇒ can match to more features

If degree = # points, polynomial passes through each point: perfect
match!

Is it meaningful?

It could be:

if there is no noise or uncertainty in the measurement
if the true distribution is indeed perfectly described by such a
polynomial

. . . not impossible, but not very common. . .

Solution: testing sample

Use independent sample to validate the result

Expected: performance will also increase, go through a maximum and
decrease again, while it keeps increasing on the training sample
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Choice of function class: testing
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Data generated from an unknown function with unknown noise

c©Balàzs Kégl
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Choice of function class: testing
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Const. least squares fit, training RMSE = 0.915, test RMSE = 1.067
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Choice of function class: testing
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Linear least squares fit, training RMSE = 0.581, test RMSE = 0.734
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Choice of function class: testing
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Quadr. least squares fit, training RMSE = 0.579, test RMSE = 0.723
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Choice of function class: testing
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Cubic least squares fit, training RMSE = 0.339, test RMSE = 0.672
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Choice of function class: testing
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PolyH6L least squares fit, training RMSE = 0.278, test RMSE = 0.72
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Choice of function class: testing
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PolyH9 L least squares fit, training RMSE = 0, test RMSE = 46.424

c©Balàzs Kégl
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Choice of function class
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Training and test RMSE's for polinomial fits of different degrees

c©Balàzs Kégl
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Choice of function class

Non-parametric fit

Minimising the training cost (here, RMSE) does not work if the
function class is not fixed in advance (e.g. fix the polynomial degree):
complete loss of generalisation capability!

But if you do not know the correct function class, you should not fix
it! Dilemma. . .

Capacity control and regularisation

Trade-off between approximation error and estimation error

Take into account sample size

Measure (and penalise) complexity

Use independent test sample

In practice, no need to correctly guess the function class, but need
enough flexibility in your model, balanced with complexity cost
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Multivariate discriminants

Reminder

To solve binary classification problem with the fewest number of
mistakes, sufficient to compute the multivariate discriminant:

D(x) =
s(x)

s(x) + b(x)
where:

s(x) = p(x |S) signal density
b(x) = p(x |B) background density

Cutting on D(x) is equivalent to cutting on probability p(S |x) that
event with x values is of class S

Which approximation to choose?

Best possible choice: cannot beat Bayes limit (but usually impossible
to define)

No single method can be proven to surpass all others in particular case

Advisable to try several and use the best one
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Cut-based analysis and grid search

Cut-based analysis

Simple approach: cut on each discriminating variable

Difficulty: how to optimise the cuts?

Grid search

x

y

c©Harrison Prosper

Split each variable in K values

Apply cuts at each grid point:
x > xi , y > yi

Number of points scales with
Kn: curse of dimensionality
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Random grid search

RGS

x

y

S
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Background fraction

0
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y y

i

i

 

 

H

Number of cut points
independent of dimensionality

Sampled points density follows
signal density

Use each point in signal sample
as grid point:

c©Harrison Prosper
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Random grid search example

Comparison to BNN

c©Harrison Prosper

Blue: 5-dim Bayesian neural
network discriminant (see later)

Points: each cut point from a
5-dim RGS calculation

Conclusions:

RGS can find very good
criteria with high
discrimination
but it usually cannot
compete with a full-blown
multivariate discriminant
and never outsmarts it
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Genetic algorithms

Survival of the fittest

Inspired by biological evolution

Model: group (population) of abstract representations
(genome/discriminating variables) of possible solutions
(individuals/list of cuts)

Typical processes at work in evolutionary processes:

inheritance
mutation
sexual recombination (a.k.a. crossover)

Fitness function: value representing the individual’s goodness, or
comparison of two individuals

For cut optimisation:

good background rejection and high signal efficiency
compare individuals in each signal efficiency bin and keep those with
higher background rejection
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Genetic algorithms

Algorithm

Better solutions more likely to be selected for mating and mutations,
carrying their genetic code (cuts) from generation to generation

Algorithm:
1 Create initial random population (cut ensemble)
2 Select fittest individuals
3 Create offsprings through crossover (mix best cuts)
4 Mutate randomly (change some cuts of some individuals)
5 Repeat from 2 until convergence (or fixed number of generations)

Good fitness at one generation ⇒ average fitness in the next

Algorithm focuses on region with higher potential improvement
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Quadratic discriminants

Gaussian problem

Suppose densities s(x) and b(x) are multivariate Gaussians:

Gaussian(x |µ,Σ) =
1√

(2π)n|Σ|
exp

(
− 1

2
(x−µ)T Σ−1(x−µ)

)
with vector of means µ and covariance matrix Σ

Then Bayes factor B(x) = s(x)/b(x) (or its logarithm) can be
expressed explicitly:

lnB(x) = λ(x) ≡ χ2(µB ,ΣB)− χ2(µS ,ΣS)

Decision
boundary

with χ2(µ,Σ) = (x − µ)TΣ−1(x − µ)

Fixed value of λ(x) defines a
quadratic hypersurface partitioning
the n-dimensional space into
signal-rich and background-rich
regions

Optimal separation if s(x) and b(x)
are indeed multivariate Gaussians
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Quadratic discriminant

c©Balàzs Kégl
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Quadratic discriminant

c©Balàzs Kégl
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Quadratic discriminant

c©Balàzs Kégl
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Quadratic discriminant

c©Balàzs Kégl
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Linear discriminant

Fisher’s discriminant

If in λ(x) the same covariance matrix is used for each class (e.g.
Σ = ΣS + ΣB) one gets Fisher’s discriminant:

λ(x) = w · x with w ∝ Σ−1(µS − µB)

w

kxw #"

kxw $"

Optimal linear separation

Works only if signal and
background have different
means!

Optimal classifier (reaches the
Bayes limit) for linearly
correlated Gaussian-distributed
variables
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Support vector machines

Generalising Fisher discriminant

Fisher discriminant: may fail completely for highly non-Gaussian
densities

But linearity is good feature ⇒ try to keep it

Idea: data non-separable in n-dim space Rn, but better separated if
mapped to higher dimension space RH : h : x ∈ Rn → z ∈ RH

Use hyper-planes to partition higher dim space: f (x) = w · h(x) + b

Example:h : (x1, y2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2 )

x1

x2

z1

z2

z3
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Support vector machines

Starting simple: separable data

Consider separable data in RH , and three parallel hyper-planes:

w · h(x) + b = 0 (separating hyper-plane between red and blue)

w · h(x1) + b = +1 (contains h(x1))

w · h(x2) + b = −1 (contains h(x2))

Multivariate Discriminants,  Harrison B. Prosper 

plane: w.h(x

h(x1)

h(x2)

w

Subtract blue from red:
w ·
(
h(x1)− h(x2)

)
= 2

With unit vector ŵ = w/‖w‖:
ŵ ·
(
h(x1)− h(x2)

)
= 2/‖w‖ = m

Margin m is distance between red and
blue planes

Best separation: maximise margin

⇒ empirical risk margin to minimise:
R(w) ∝ ‖w‖2
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Support vector machines

Constraints

When minimising R(w), need to keep signal and background
separated

Label red dots y = +1 (“above” red plane) and blue dots y = −1
(“below” blue plane)

Since: w · h(x) + b > 1 for red dots

w · h(x) + b < −1 for blue dots

all correctly classified points will satisfy constraints:

yi
(
w · h(xi ) + b

)
≥ 1, ∀i = 1, . . . ,N

Using Lagrange multipliers αi > 0, cost function can be written:

C (w , b, α) =
1

2
‖w‖2 −

N∑
i=1

αi

[
yi
(
w · h(xi ) + b

)
− 1
]
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Support vector machines

Minimisation

Minimise cost function C (w , b, α) with respect to w and b:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj
(
h(xi ) · h(xj)

)
At minimum of C (α), only non-zero αi correspond to points on red
and blue planes: support vectors

Kernel functions

Issues:

need to find h mappings (potentially of infinite dimension)
need to compute scalar products h(xi ) · h(xj)

Fortunately h(xi ) · h(xj) are equivalent to some kernel function
K (xi , xj) that does the mapping and the scalar product:

C (α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK (xi , xj)
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Support vector machines

Example

h : (x1, y2)→ (z1, z2, z3) = (x2
1 ,
√

2x1x2, x
2
2 )

h(x) · h(y) = (x2
1 ,
√

2x1x2, x
2
2 ) · (y2

1 ,
√

2y1y2, y
2
2 )

= (x · y)2

= K (x , y)

x1

x2

z1

z2

z3

In reality: do not know a priori the right kernel

⇒ have to test different standard kernels and use the best one
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Support vector machines

Real life: non-separable data

Even in infinite dimension space, data are often non-separable

Need to relax constraints:

yi
(
w · h(xi ) + b

)
≥ 1− ξi

x1

x2

margin 

support 
vectors

S
ep

ar
ab

le
 d

at
a

optimal hyperplane

N
on

-s
ep

ar
ab

le
 d

at
a

ξ1

ξ2

ξ4

ξ3

with slack variables ξi > 0

C (w , b, α, ξ) depends on ξ,
modified C (α, ξ) as well

Values determined during
minimisation
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Kernel density estimation (KDE)

Basic principle

Introduced by E. Parzen in the 1960s

Place a kernel K (x , µ) at each training point µ

Density p(x) at point x approximated by:

p(x) ≈ p̂(x) =
1

N

N∑
j=1

K (x , µj)
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Kernel density estimation (KDE)

Choice of kernel

Any kernel can be used

In practice, often product of Gaussians:

K (x , µ) =
n∏

i=1

Gaussian(xi |µ, hi )

each with bandwidth (width) hi

Optimal bandwidth

Too narrow: noisy approximation

Too wide: loose fine structure

In principle found by minimising risk function
R(p̂, p) =

∫ (
p̂(x)− p(x)

)2
dx

For Gaussian densities:

h = σ

(
4

(n + 2)N

)1/(n+4)

Far from optimal for non-Gaussian densities
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Kernel density estimation (KDE)

Example

with Gaussian optimal bandwidth
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Kernel density estimation (KDE)

Why does it work?

When N →∞:

p̂(x) =

∫
K (x , µ)p(µ)dµ

p(µ): true density of x

Kernel bandwidth getting smaller with N, so when N →∞,
K (x , µ)→ δn(x − µ) and p̂(x) = p(x)

KDE gives consistent estimate of probability density p(x)

Limitations

Choice of bandwidth non-trivial

Difficult to model sharp structures (e.g. boundaries)

Kernels too far apart in regions of low point density

(both can be mitigated with adaptive bandwidth choice)

Requires evaluation of N n-dimensional kernels
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Kernel density estimation (KDE)

c©Balàzs Kégl
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Kernel density estimation (KDE)
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Kernel density estimation (KDE)
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Kernel density estimation (KDE)
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Kernel density estimation (KDE)
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Kernel density estimation (KDE)
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Kernel density estimation (KDE)
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Kernel density estimation (KDE)
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Kernel density estimation (KDE)
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Kernel density estimation (KDE)

c©Balàzs Kégl
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KDE: choice of bandwidth

Overfitting

Underfitting
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Training and test error rates

c©Balàzs Kégl
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Neural networks

block title

test
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Neural networks

Brief history of artificial neural networks

1943: W. McCulloch and W. Pitts explore capabilities of networks of
simple neurons

1958: F. Rosenblatt introduces perceptron (single neuron wih
adjustable weights and threshold activation function)

1969: M. Minsky and S. Papert prove limitations of perceptron
(linear separation only) and (wrongly) conjecture that multi-layered
perceptrons have same limitations
⇒ ANN research almost abandoned in 1970s!!!

1986: Rumelhart, Hinton and Williams introduce “backward
propagation of errors”: solves multi-layered learning

Today: will only talk about multilayer perceptron (MLP), but there
are many recent advances in ANN
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Neural networks

Single neuron

Remember linear separation:
λ(x) = w · x =

∑n
i=1 wixi + w0

Boundary at λ(x) = 0

Replace threshold boundary by sigmoid:

-20 -15 -10 -5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1/(1+exp(-x))

λ→ σ(λ) =
1

1 + e−λ

1

i

n

 

w1

wi

wn

:

:

σ(λ) is neuron activity, λ is activation

Neuron behaviour completely controlled by weights w = {w0, . . . ,wn}
Training: minimisation of error/loss function (quadratic deviations,
entropy [maximum likelihood]), via gradient descent or stochastic
approximation
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Neural networks

Training

Minimise error function E (w)

Gradient descent: w (k+1) = w (k) − η dE (k)

dw

∂E
∂wj

=
∑N

n=1−(t(n) − y (n))x
(n)
j with target t(n) (0 or 1), so t(n) − y (n)

is the error on event n

All events at once (batch learning):

weights updated all at once after processing the entire training sample
finds the actual steepest decent
takes more time

or one-by-one (online learning):

speeds up learning
useful in HEP because of redundant datasets (large Monte Carlo
samples with many similar events)
may avoid local minima with stochastic component in minimisation
depends on the order of training events

One epoch: going through the training data once
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Neural networks

Overtraining

 !" #$% &' (&)'$*$)$  !" #$%&&%'& (%)'&*% )'& #% #+, -% ,%), . '/ +(1+&,%(%/, -23*&%/,4 5##% -*&+6, *7.#%(%/, %/ (+8%//%9'):'$; <=>?= *1+:'%)@ 1'2) )% (%, ; &+6,&% -% A.B+/ +/,2/'% .'>-%#. -% CD= *1+:'%)4 E% +(1+&,%>(%/, %), )8(1,+(.,2:'% -'  !"#$%%"&'()  $*&@ :'2 2/-2:'% :'% #% &*)%.' . .11&2) -%) .&.,*&2),2:'%)1.&,2'#2F&%) -%) %G%(1#%) 1&*)%/,*) H 2# +((%, .#+&) '/% %&&%'& ,&F) 1%,2,% )'& #% #+, -$.11&%/,2)).7%@(.2) %), 2/.1.I#% -% 7*/*&.#2)%& .' #+, -% ,%),4



 !"#  ! # O##'),&.,2+/ -' 1&+I#F(% -' )'&>.11&%/,2)).7%4 !"! #$%&%'($%)* +, -./.-$/)* 1,&$%2),3. -),/ &( &(''%4($%)* +. +)**5.'S&.-2,2+//%##%(%/,@ #% 1%&%1,&+/ ('#,2>+'K%) . *,*@ %, %), ,+'9+'&)@ ',2#2)* 1+'& #. #.))2M.,2+/-% -+//*%)@ +((% #. )*1.&.,2+/ -$'/ )27/.# -' I&'2, -% A+/- +' #. &%+//.2))./% -% .&.,F&%) (./')>&2,) T ℄4 E%,,% ',2#2).,2+/ &%1+)% )'& #%) 1&+1&2*,*) )'2J./,%)4V/ 1%&%1,&+/ )./) +'K% .K*%@ +&&%,%(%/, %/,&.2/*@ &*.#2)% '/% )*1.&.,2+/ #2/*.2&% -2)&2(./,% H#. )'&A.% %), '/ K81%&1#./ -./) #$%)1.% -%) 1.&.(F,&%) :'2 )*1.&% %, %)1.% %/ '/%P+/% -% W)27/.#W %, '/% P+/% -% WI&'2, -% A+/-W4 V/ ,%# &*)%.' /% 1%', -+/ 1.) &*)+'-&% %G.,%(%/,

Diverging weights can cause overfitting

Mitigate by:

early stopping (after a fixed number of epochs)
monitoring error on test sample
regularisation, introducing a “weight decay” term:

Ẽ (w) = E (w) +
α

2

∑
i

w2
i
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Neural networks

Theorem

Let σ(.) be a non-constant, bounded, and monotone-increasing continuous
function. Let C(In) denote the space of continuous functions on the
n-dimensional hypercube. Then, for any given function f ∈ C(In) and
ε > 0 there exists an integer M and sets of real constants wj ,wij

wherei = 1, . . . , n and j = 1, . . . ,M such that

y(x ,w) =
M∑
j=1

wjσ

(
n∑

i=1

wijxi + w0j

)

is an approximation of f (.), that is |y(x)− f (x)| < ε
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Neural networks

Interpretation

You can approximate any continuous function to arbitrary precision
with a linear combination of sigmoids

Corollary 1: can approximate any continuous function with neurons!

Corollary 2: a single hidden layer is enough

Corollary 3: a linear output neuron is enough

Multilayer perceptron: feedforward network

Neurons organised in layers

Output of one layer becomes input
to next layer

yk(x ,w) =
M∑
j=0

w
(2)
kj σ

(
n∑

i=0

w
(1)
ji xi

)
︸ ︷︷ ︸

zj
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Neural networks

Can fit any function: examples

1 input (training data), 1 output

3 hidden neurons on one hidden layer

c©Jan Therhaag

Any continuous function can be 

determined by number of hidden 

units (neurons) and characteristic 

z!
z!
z!

training data 

output 

Yann Coadou (CPPM) — Multivariate analysis ESIPAP’14, Archamps, 29 January 2014 51/65



Neural networks

Backpropagation

Training means minimising error
function E (w)

For single neuron: dE
dwk

= (y − t)xk

One can show that for a network:

dE

dwji
= δjzi , where

δk = (yk − tk) for output neurons

δj ∝
∑
k

wkjδk otherwise

As before, weights can
be regularised:

Ẽ (w) = E (w)+
α

2

∑
i

w2
i

Hence errors are propagated backwards
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Neural networks

Regularisation

10 hidden nodes 10 hidden nodes and α = 0.04

c©Jan Therhaag

Much less overfitting, better generalisation properties
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Neural networks

Getting confused: testing better than training?

Train on noisy data centred on
true value

Test on no-noise data

Testing error becomes better:
during training, the NN learned
the true distribution (average
of noisy inputs)

⇒ testing converges

Example:
sin(x)/x + rand(−0.05,+0.05)

Of course doesn’t work as well
if noise is not symmetric

Testing sample

Training sample

c©Jérôme Schwindling
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Neural networks

Tricks of the trade

Preprocess data:

if relevant, provide e.g. x/y instead of x and y
subtract the mean because the sigmoid derivative becomes negligible
very fast
normalise variances (close to 0)
shuffle training sample (order matters in online training)

Initial random weights should be small to avoid saturation

Batch/online training: depends on the problem

Regularise weights to minimise overtraining. May also help select
good variables via Automatic Relevance Determination (ARD)

Make sure the training sample covers the full parameter space

No rule (not even valid guestimates) about the number of hidden
nodes

A single hidden layer is enough for all purposes, but multiple hidden
layers may allow for a solution with fewer parameters
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Neural networks

Adding a hidden layer

2-20-1 network
(81 parameters)

2-50-1 network
(201 parameters)

2-10-2-1 network
(55 parameters)
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Bayesian neural networks

Introduction

As name says: Bayesian approach, try to infer functions f (x)

Training sample T of N examples (x , y)1, (x , y)2, . . . , (x , y)N of
discriminating variables x and class labels y

Each point w corresponds to a function f (x ,w)

Assign probability density p(w |T ) to it

If p(w1|T ) > p(w2|T ), then associated function f (x ,w1) more
compatible with training data T than function f (x ,w2)

Posterior density p(w |T ) is final result of Bayesian inference

BNN is the predictive distribution

p(y |x ,T ) =

∫
p(y |x ,w)p(w |T )dw

where the function class is class of feedforward neural networks with a
fixed structure (inputs, layers, hidden nodes, outputs)
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Bayesian neural networks

In practice

Take the mean of the predictive distribution:

y(x) =

∫
zp(z |x ,T )dz

=

∫
f (x ,w)p(w |T )dw

Why? For classification p(y |x ,w) = f (x ,w)y
(
1− f (x ,w)

)1−y

for y = 1: p(y |x ,w) = f (x ,w)
for y = 0: p(y |x ,w) = 1− f (x ,w)
so only f (x ,w) contributes to the mean

Example usage:
f (x ,w) =

1

1 + e−g(x ,w)

g(x ,w) = b +
H∑
j=1

vj tanh(aj +
n∑

i=1

uijxi )

with H hidden nodes
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Bayesian neural networks

Implementation

Scanning NN parameter space can be daunting

Can approximate integral in y(x) using Markov chain Monte Carlo
method (MCMC)

Will generate M sample weights w1, . . . ,wM from posterior density
p(w |T )

y(x) ≈ 1
M

∑M
m=1 f (x ,wm)

Use spare subset of MCMC points to avoid correlations

Start with “reasonable” guesses for parameters (e.g. zero-centred
Gaussians)
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Bayesian neural networks

Example

x

tqb

Wbb

x

)

, 1-D histograms

Individual functions

points: bin by bin histogram ratio

thin curves: each f (x ,wk)

thick curve: average, which approximates D(x)
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Decision trees

Details tomorrow
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Summary of MVA techniques
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(according to TMVA authors) c©Andreas Hoecker
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Conclusion

When trying to achieve optimal discrimination one can try to
approximate

D(x) =
s(x)

s(x) + b(x)

Many techniques and tools exist to achieve this

(Un)fortunately, no one method can be shown to outperform the
others in all cases.

One should try several and pick the best one for any given problem

Multivariate techniques are at work in your everyday life without your
knowning and can easily outsmart you for many tasks

Try this to convince yourself http://www.phi-t.de/mousegame/index eng.html
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