Search Sensitivity for Heavy Neutral Higgs Bosons at a **100 TeV Hadron Collider**

John Stupak III on behalf of Eric Brownson¹, Nathaniel Craig², Nitish Dhingra³, Ulrich Heintz⁴, Gena Kukartsev⁴, Meenakshi Narain⁴, Neeti Parashar⁵

¹University of Puerto Rico, ² Rutgers University, ³ Panjab University, ⁴ Brown University, ⁵ Purdue University - Calumet

January 31, 2014

Introduction

The SM contains a minimal Higgs sector

- Many natural models predict extended Higgs sector
 - Can be described at low energy by the Two Higgs Doublet Model (2HDM)

2HDM

- 5 Higgs bosons
 - h, H, A, H[±]
- Large parameter space, but many simplifications possible

Coupling Assignments

No CP violation, No FCNC, MSSM quartic couplings

=4 2HDM types with 6 parameters: 4 masses and 2 angles (α , β)

Will assume throughout that h(125) is the lighter of the CP-even 2HDM scalars Will focus on search sensitivity for H and A 1/31/14 John Stupak III

Probing the 2HDM (I)

- 2 complementary strategies available to probe 2HDM:
 Precision measurement of h(125) couplings
 - Couplings of $h_{\rm 2HDM}$ differ from those of $h_{\rm SM}$

У₂ндм∕У _{ЅМ}	hVV	hQu	hQd	hLe
I			sin(β-α) +	sin(β-α) + cos(β-α)/tan(β)
LS		sin(β-α) + cos(β-α)/tan(β)	cos(β-α)/tan(β)	sin(β-α) – cos(β-α)*tan(β)
2	sin(p-α)		sin(β-α) – cos(β-α)*tan(β)	
F				sin(β-α) + cos(β-α)/tan(β)

- h(125) coupling measurements can constrain 2HDM
 - But not sensitive in alignment limit (AL) for $\cos(\beta \alpha) = 0$, all $y_{2HDM}/y_{SM} = 1$

h(125) Couplings Constraints

Probing the 2HDM (II)

- 2 strategies available to probe 2HDM:
 - Precision measurement of h(125) couplings
 - Direct search for additional scalars
 - Best to focus on production through gluon fusion
 - HVV coupling proportional to $cos(\beta-\alpha) \rightarrow VBF$ and AP suppressed
 - ■No AVV tree-level coupling → No VBF or AP
 - Scalars generally prefer to decay to heaviest kinematically accessible final state

Allowed decays:

- H → tt, hh, ZZ, WW, bb, ττ, γγ
- A \rightarrow tt, Zh, bb, $\tau\tau$, $\gamma\gamma$

*Suppressed near AL

- Cleaner decays also happen to be suppressed near AL
 - But can still have significant BR quite close to AL
- We focus on search for gluon fusion production with H → ZZ and A → Zh

Assumed run conditions:

http://www.snowmass2013.org/tiki-index.php?page=EF+Facilities+List

	LHC Run II	HL-LHC	HE-LHC	VLHC
s ^{1/2} [TeV]	14	14	33	100
L [fb ⁻¹]	300	3000	3000	1000
<n<sub>PU></n<sub>	50	140	140	40

Background MC

Madgraph + Bridge + Pythia + Delphes*

S_T-binned background samples

Normalized to NLO cross sections**

Signal MC

*Delphes parameterized detector simulation with generic "LHC-like" Snowmass detector

Madgraph + Pythia + Delphes*

**Sub-dominant backgrounds at LO

- SM NLO gluon fusion cross sections and BRs rescaled by 2HDM LO coupling dependence on $\alpha,\,\beta$

Parton Luminosity

 Large gain in gluon fusion cross section at 100 TeV compared to 14 TeV
 Factor ~20 (~100) for m_{aa} = 200 GeV (1 TeV)

Cross Section × BR

m = 500 GeV

Trigger and Object Selection

Trigger

Assume thresholds remain similar to LHC

Object selection

- Iepton (e, μ)
 - p_T > 5 GeV
 - $|\eta| < 2.5$

Relative isolation < 10%

• τ

- p_T > 20 GeV
- |η| < 2.5
- 65% efficiency
- 0.4% mistag rate

b-jet (lŋl ≤ 1.2) b-jet (|m| > 1.2)

c-jet ($\ln l \le 1.2$) ----- c-jet (lŋl > 1.2)

• 0.1% light jet mis-tag rate

Event Selection

- Exactly 4 leptons
- 2 Z candidates
 - Opposite sign (OS), same flavor (SF) lepton pair
 - 80 GeV < m(Z₁) < 100 GeV
 - 60 GeV < m(Z₂) < 120 GeV</p>

Results

2D Results

A→Zh→ℓℓ+bb/ττ

Event Pre-Selection

Channel			
bb	ττ		
Exactly 2 b-jets	Exactly 2 τ leptons		
Fewer than 2 τ leptons	Fewer than 2 b-jets		
Exactly 2 leptons			
<u>Z candidate</u> • OSSF lepton pair • 80 GeV < m(Z) < 100 GeV			
h candidate			
 90 GeV < m(bb) < 150 GeV 	 55 GeV < m(ττ) < 125 GeV 		

Pre-Selection Kinematics

- Apply additional selection cuts to enhance signal sensitivity
 - • $\Delta \Phi(\ell_1, \ell_2) < 1.9$ • $p_T(Z) > 60 \text{ GeV}$ • $0.5 < p_T(Z)/p_T(h) < 2.5$

John Stupak III

Selected Events

Event Kinematics

 Use to determine σ×BR which can be excluded or yield observation/discovery

Assume uniform 20% background systematic uncertainty

Results

ττ (bb) channel more sensitive at small (large) m(A)
 Low mass A harder to exclude/discover than H

2D Results

Conclusions

Important to fully explore the Higgs sector Precision measurement of h(125) couplings can constrain parameter space of the 2HDM Little (no) sensitivity near (at) alignment limit Direct search at a 100 TeV pp collider offers unique potential to probe regions of parameter space near the alignment limit Important to pursue both coupling measurements and direct search

Backup

2HDM Coupling Strengths

[Craig, Galloway, Thomas]

			Lepton-Specific	Flipped
$y_{2 m HDM}/y_{ m SM}$	2HDM 1	2HDM 2	2HDM 3	2HDM 4
hVV	$s_{eta-lpha}$	$s_{eta-lpha}$	$s_{eta-lpha}$	$s_{eta-lpha}$
hQu	$s_{\beta-\alpha} + c_{\beta-\alpha}/t_{\beta}$	$s_{\beta-\alpha} + c_{\beta-\alpha}/t_{\beta}$	$s_{\beta-\alpha} + c_{\beta-\alpha}/t_{\beta}$	$s_{\beta-\alpha} + c_{\beta-\alpha}/t_{\beta}$
hQd	$s_{\beta-\alpha} + c_{\beta-\alpha}/t_{\beta}$	$s_{\beta-\alpha} - t_{\beta}c_{\beta-\alpha}$	$s_{\beta-\alpha} + c_{\beta-\alpha}/t_{\beta}$	$s_{\beta-\alpha} - t_{\beta}c_{\beta-\alpha}$
hLe	$s_{\beta-\alpha} + c_{\beta-\alpha}/t_{\beta}$	$s_{\beta-\alpha} - t_{\beta}c_{\beta-\alpha}$	$s_{\beta-lpha} - t_{\beta}c_{\beta-lpha}$	$s_{\beta-\alpha} + c_{\beta-\alpha}/t_{\beta}$
HVV	$c_{eta-lpha}$	$c_{eta-lpha}$	$c_{eta-lpha}$	$c_{eta-lpha}$
HQu	$c_{\beta-\alpha} - s_{\beta-\alpha}/t_{\beta}$	$c_{\beta-lpha} - s_{\beta-lpha}/t_{eta}$	$c_{\beta-lpha} - s_{\beta-lpha}/t_{eta}$	$c_{\beta-\alpha} - s_{\beta-\alpha}/t_{\beta}$
HQd	$c_{\beta-\alpha} - s_{\beta-\alpha}/t_{\beta}$	$c_{\beta-\alpha} + t_{\beta}s_{\beta-\alpha}$	$c_{\beta-lpha} - s_{\beta-lpha}/t_{eta}$	$c_{\beta-\alpha} + t_{\beta}s_{\beta-\alpha}$
HLe	$c_{\beta-lpha} - s_{\beta-lpha}/t_{eta}$	$c_{\beta-\alpha} + t_{\beta}s_{\beta-\alpha}$	$c_{\beta-\alpha} + t_{\beta}s_{\beta-\alpha}$	$c_{\beta-lpha} - s_{\beta-lpha}/t_{eta}$
AVV	0	0	0	0
AQu	$1/t_{eta}$	$1/t_{eta}$	$1/t_{eta}$	$1/t_{eta}$
AQd	$-1/t_{\beta}$	t_{eta}	$-1/t_{\beta}$	t_eta
ALe	$-1/t_{\beta}$	t_{eta}	t_{eta}	$-1/t_{eta}$

[Branco, Ferreira, Lavoura, Rebelo, Sher, Silva]

	Type I	Type II	Lepton-specific	Flipped
ξ_h^u	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$	$\cos \alpha / \sin \beta$
ξ_h^d	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$
ξ_h^ℓ	$\cos \alpha / \sin \beta$	$-\sin \alpha / \cos \beta$	$-\sin \alpha / \cos \beta$	$\cos \alpha / \sin \beta$
ξ^u_H	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$	$\sin \alpha / \sin \beta$
ξ^d_H	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$
ξ^ℓ_H	$\sin \alpha / \sin \beta$	$\cos \alpha / \cos \beta$	$\cos \alpha / \cos \beta$	$\sin \alpha / \sin \beta$
ξ^u_A	$\cot eta$	\coteta	\coteta	\coteta
ξ^d_A	$-\cot\beta$	$\tan\beta$	$-\cot\beta$	aneta
ξ^{ℓ}_A	$-\cot\beta$	$\tan\beta$	an eta	$-\cot\beta$

$\sigma(H) \times BR(H \rightarrow X)$

24

14 TeV

14 TeV

 $\sigma(A) \times BR(A \rightarrow X)$

H 🄶 ZZ

TYPE 1 2HDM: LHC H→ZZ vs. couplings, m_H=800 GeV

0.05 0.00 0.10 $\cos(\beta - \alpha)$

John Stupak III

A → Zh

John Stupak III