

Top Quark Partners with Charge 5e/3 (T_{5/3})

Aram Avetisyan

Boston University

January 31, 2014

1

Top Partners

- Heavy top partners are a common prediction of different theories
 - Couple to 3rd generation quarks
 - Solve hierarchy problem
 - Compatible with 125 GeV Higgs
 - See arXiv:1212.1380 (Int. J. Mod. Phys. A Volume 28 (2013) 1330004)
- Can be found in
 - Composite Higgs
 - Extra dimensions (KK gluons)

The T_{5/3}

- Top partner models include several particles
 - Focus on quark with charge 5/3
 - Typically the lightest

- Theoretical descriptions
 - Contino & Servant, JHEP 0806:026 (2008)
 - Mrazek & Wulzer, Phys. Rev. D 81, 075006 (2010)
 - De Simone et al, JHEP 1304:004 (2013)
- Experimental results
 - arxiv:1312.2391 (8 TeV) excludes M(T_{5/3}) < 800 GeV at 95% C.L.</p>
 - ATLAS-CONF-2012-130 (7 TeV): 670-700 GeV depending on coupling
 - Published result: CDF (Phys.Rev.Lett.104:091801, 2010), 365 GeV

Model

- $T_{5/3}$ with $Q_e = 5/3$ and B with $Q_e = -1/3$ decay into W and top
 - Per Mrazek & Wulzer, B is typically more massive than $T_{5/3}$
 - Focus on $T_{5/3}$
- Most striking signature: same-sign dileptons

 $l^{\pm}l^{\pm} + 2b + 2W$

• The hadronically decaying $T_{5/3}$ can be reconstructed

Backgrounds

- Same sign lepton requirement removes most Standard Model backgrounds
- Remaining backgrounds have lower cross-sections:
 - Dibosons: WW (same-sign), WZ, ZZ, etc.
 - Tribosons: WWW, WWZ, etc.
 - ttbarW, ttbarZ
- Instrumental backgrounds
 - Charge misidentification (mainly from Z)
 - Non-prompt leptons

Snowmass Study

- Looked at T_{5/3} at 14 TeV and 33 TeV
 arXiv:1309.2234
- Pair production only
 - Single production requires additional assumptions regarding couplings
- Snowmass "detector" setup
 - Generate events with MadGraph
 - Simulation with Delphes
 - See arXiv:1308.1636, arXiv:1309.1057
- Standard Model backgrounds only

33 TeV Distributions After Same-Sign Selection

Snowmass T_{5/3} Selection

Parameter	14 TeV Min [GeV] 33 TeV Min [GeV]	
Leading lepton p_T	80	150
Second lepton p_T	30	50
Leading jet p_T	150	150
Second jet p_T	50	50
$\not\!$	100	200
H_T	1500	2200
S_T	2000	3000

- In addition, require objects corresponding to at least 7 decay products of the T_{5/3} pair
 - Same-sign leptons account for 2
 - The rest are other leptons or jets
 - Top-tagged jets count as 3, W-tagged jets count as 2

Snowmass T_{5/3} Results

Collider	Luminosity	Pileup	3σ evidence	5σ discovery	95% CL
LHC 14 TeV	$300 {\rm ~fb^{-1}}$	50	$1.51 { m TeV}$	$1.39 { m ~TeV}$	$1.57 { m TeV}$
LHC 14 TeV	$300 {\rm ~fb^{-1}}$	140	$1.50 { m TeV}$	$1.38 { m ~TeV}$	$1.58 { m TeV}$
LHC 14 TeV	3 ab^{-1}	50	$1.67 { m TeV}$	$1.57 { m ~TeV}$	$1.76 { m ~TeV}$
LHC 14 TeV	3 ab^{-1}	140	$1.66 { m TeV}$	$1.55 { m ~TeV}$	$1.76 { m ~TeV}$
LHC 33 TeV	$300 {\rm ~fb^{-1}}$	50	$2.36 { m TeV}$	$2.13 { m TeV}$	$2.48 { m TeV}$
LHC 33 TeV	$300 {\rm ~fb^{-1}}$	140	$2.17 { m TeV}$	$2.15 { m TeV}$	$2.47 { m TeV}$
LHC 33 TeV	3 ab^{-1}	50	$2.61 { m TeV}$	$2.40 { m TeV}$	$2.77 { m TeV}$
LHC 33 TeV	3 ab^{-1}	140	$2.50 { m TeV}$	$2.35 { m TeV}$	$2.69 { m TeV}$

• At 33 TeV, 95% CL at $T_{5/3}$ mass of about 2.5 to 2.8 TeV

Considerations for 100 TeV: Trigger

- LHC Run I (7-8 TeV): use dilepton triggers
 Shared with Higgs, Top, SUSY, etc. groups.
- LHC Run II (13-14 TeV): still dilepton triggers, but customized
 - Higgs, Top, etc. groups prefer low- p_T leptons with tight isolation
 - Top quarks from $T_{5/3}$ are highly boosted
 - Leptons may merge with b-quarks
 - Tight isolation may impact signal efficiency
- At 100 TeV
 - Leptons from top quark will merge with b-quarks
 - May need special algorithm for identifying such top quarks

Considerations for 100 TeV: Jet Substructure

- LHC Run I (8 TeV)
 - W and top tagging based mainly on masses of sub-jet combinations after "grooming" the jet
 - Less successful for very high p_T jets
 - Sub-jets too close
 - Target mass window small compared to energy scale
- LHC Run II (13-14 TeV)
 - n-Subjettiness, other algorithms still being developed
- 100 TeV: Same high p_T problems, but much, much worse
 - Will need new algorithms
 - Consider this when designing detector

Cross-Section Extrapolation (8 TeV)

Cross-sections calculated with HATHOR

- 800 GeV limit is from a fullfledged analysis
 - All background, systematics, etc.
- But only 20fb⁻¹ of luminosity
- Uncertainty on background is of order 50%
- Assuming similar performance, can exclude T_{5/3} of up to 4 TeV at 100 TeV collider

Cross-Section Extrapolation (33 TeV)

- 33 TeV limit from Snowmass study
- No non-prompt or charge misidentification backgrounds
- Background uncertainty of order 20%
- With 3ab⁻¹, can reach about
 5.7 TeV at 100 TeV collider

Conclusions

- Searches for particles like the $T_{5/3}$ can be done at 100 TeV
 - But need to think about very boosted objects
 - At trigger
 - At reconstruction
- Pair-produced cross-section scaling limits results
 - Will consider single-production
 - Produced in association with top quark so not that different
 - Still same-sign dileptons