Transverse Momentum Resummation Effects on the WW fiducial cross section Harikrishnan Ramani C.N.Yang Institute of Theoretical Physics Based on 1405.xxxx with Patrick Meade and Mao Zeng ### Outline - Motivation - Shapes affect Fiducial Cross Section - Transverse Momentum Resummation - Results ## Why is it important to get WW right? - LHC Era of Electroweak precision measurements. Onus on experiment-theory agreement. - Heavy particles couple strongest to Higgs; - WW is large background to H->WW. - Getting background accurate will help with Higgs precision physics. - WW huge background to many BSM searches #### The WW Cross Section - WW decaying into opposite sign dilepton - Semi-leptonic and fully hadronic less easy/clean - One of few channels with a Jet Veto - Results available for ATLAS 7TeV and CMS 7&8TeV - Indirect Results also available as background to H->WW - Both ATLAS and CMS routinely report excess. ### Theory Prediction - ullet NLO(QCD) qar q o WW known. (MCFM) - use Powheg/MC@NLO for MC generation. or Madgraph(LO) +reweighting - TeV:29.51pb@LO → 47.00pb@NLO - 8TeV:35.56pb@LO \rightarrow 57.25pb@NLO - @NNLO new process gg—\(\mathcal{W} \)W (gg2WW software) ## Experimental Results #### Summary-CMS #### WW @ LHC - ATLAS & CMS more consistent with each other than with theory! - Discrepancy higher @ 8TeV #### WW excess from published Higgs Background #### Control Region estimates at 8TeV-ATLAS | Estimate | $N_{ m obs}$ | $N_{ m bkg}$ | $N_{ m sig}$ | N_{WW} | |-------------------|--------------|---------------|---------------|----------------| | \overline{WW} | | | | | | $N_{\rm jet} = 0$ | 2224 | 1970 ± 17 | 31 ± 0.7 | 1383 ± 9.3 | | $N_{\rm jet} = 1$ | 1897 | 1893 ± 17 | 1.9 ± 0.3 | 752 ± 6.8 | ## Possible Explanation for Excess - Badly Estimated Backgrounds? - New Physics? Possible BSM solutions; Charginos - Statistical Fluctuation? - QCD changes to Total Cross Section - QCD changes to Shape Why should shape matter? Let us look at how ATLAS & CMS measure a cross section #### How ATLAS and CMS measure Cross-Section $$n = \sigma_{fid}L + n_{BG}$$ $$\sigma_{fid} = \sigma_{total}\epsilon.A.Br$$ - for WW: opposite sign lepton pair + met - n:events measured & L:luminosity. - σ_{total} :total cross section - $ullet \sigma_{fid}$ is unfolded w.r.t ϵ ,A,Br to report σ_{total} . - This procedure is hard #### Total → Fiducial → Total • Sometimes σ_{fid} very sensitive to a differential direction of σ_{total} Full Phase-space. Both curves Normalized to unity. - Slightly incorrect shape - Innacurate σ_{fid} ; - wrong unfolding; - bad estimate of σ_{total} ? #### Our Strategy - p_T resummation changes shape along p_{TWW} - If some of the cuts have strong correlations with p_{TWW} , then - These corrections could change σ_{fid} . - Do such cuts exist? If so in which direction do they shift σ_{fid} ? #### Spirit Of Resummation Often in Perturbative QCD, $$\hat{O}=1+\alpha_S(L^2+L+1)+\alpha_S^2(L^4+L^3+L^2+L+1)+\dots$$ where L is Log[r] , r the ratio of two length scales. Resummation: This can be re-written as $$\hat{O} = c(\alpha_S) exp(Lg_1(\alpha_S L) + g_2(\alpha_S L) + \alpha_S g_3(\alpha_S L) + ...)$$ where c is Log-free - · Large logs that destroy fixed order PT are resummed to all orders and found to give finite contribution - Lg_1 is called leading log (LL), (Lg_1+g_2) is called NLL and so on - common to declare results with $N^{n+1}LL$ (in the exponential) along with N^nLO (concerns) - new scale μ_{res} to capture as yet uncomputed higher Logs ## Spirit Of Resummation #### Resummation vs Parton Shower | Resummation | Parton Shower | | |--|-----------------------------------|--| | Proved to all orders in QCD~
factorization theorems | Heuristic Algorithm | | | Extended to any leading log(currently NNLL) | Approaches NLL accuracy | | | Precise and strict, few parameters to adjust | Many parameters tuned to fit data | | | Systematic Treatment of error estimates from higher logs | No such feature | | | Sums over hadronization | Can give jet information | | #### Building on Existing Literature - WW pt resummation for 14TeV LHC Grazzini et al although with a numerical estimate for factor A_3 subsequently by Becher et al. - SCET formalism-Wang et al- no Resummation Scale considered. - Recoded Grazzini Formalism with correct numerical factor for all s & studied μ_{res} variation. - Propose using an MC to generate events; Reweighting to get the resummation predicted pt shape. - Analogous practice is already followed using resummation tool HqT(Grazzini) for pp→H analysis. Shape Uncertainty due to μ_{res} more than μ_R & μ_F combined #### Shape Comparisons(aMC@NLO) #### Shape Comparisons(MADGRAPH) #### Cut-flow vs reweighted events | Cut | % | | |---|--------|--| | exactly 1 pair of oppositely charged leptons +MET | 0 | | | p_t and η cuts on leptons | 0.06% | | | mll cuts | -0.32% | | | $E_{TMiss,rel}$ | 1.16% | | | Jet Veto | 8.37% | | | p_{Tll} | 8.50% | | #### Zooming in on Jet Veto - Jet Veto: Jet = clustered object with R < 0.4 and p_T > 25GeV. - Drop all events with one or more jets. - clustered object's p_T highly correlated with p_{TWW} - Jet Veto step:biggest contributor to correction in σ_{fid} | | 0-jet | 1-jet | 2-jet | |-------------------|---------|---------|--------| | amc@nlo | 3517 | 1175 | 340 | | after reweighting | 3811.32 | 1009.76 | 280.44 | | | | Drop! | | ### Reweighted Fiducial Cross-Section | MC | Percentage
Increase
Q=mW/2 | Percentage
Increase
Q=mW | Percentage
Increase
Q=2mW | |---------------------|----------------------------------|--------------------------------|---------------------------------| | Powheg+Pythia | -5.35% | 0.16 | 4.05 | | aMC@NLO
+Herwig | -0.82 | 2.98 | 8.50 | | Madgraph
+Pythia | -8.88 | -5.94 | -1.13 | Note:Q= μ_{res} #### **Deductions** - Traditional MC-shower calculations; no resummation scale - Reweighting could increase error bars on σ_{fid} - This effect is unique to channels with a Jet-Veto because of the veto being strongly correlated with p_{TWW} . - MC@NLO(ATLAS 7TeV)increase theory prediction by 0-9%(reduce excess) - MADGRAPH(CMS 7&8TeV)decrease theory prediction by 1-9%(increase excess) - Powheg seems to be accurate. Scale Variation:3% #### What is the best Scale Choice? #### Two ways to go about this - Scale choice should be universal and physical - Universality: Cannot be much different than for other diboson processes - Physical: shouldn't be too different from the hard scale - Using Data to fit scale: Will result in scale much higher than even hard scale. Matching NLL and NNLL shape: Will result in scale much lower than the hard scale. ## Summary - Precision in pt shape important? Turn to Resummation - WW:Jet Veto:low Pt preferred - Resummation produces sizeable effects to theory prediction - It might not be viable to dial the extra resummation scale choice to fit data better.