

Searches for Supersymmetry in Resonance Production, R-Parity Violating Signatures and Events with Long-Lived Particles with the ATLAS Detector

Allan Lehan University of Liverpool On behalf of the ATLAS collaboration

Phenomenology 2014 Symposium Pittsburgh 5-7 May 2014

Current ATLAS SUSY Limits

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

$E_{\mathrm{T}}^{\mathrm{miss}}$ e, μ, τ, γ Jets $\int \mathcal{L} dt [fb^{-1}]$ Mass limit Model Reference MSUGRA/CMSSM 2-6 jets 20.3 $m(\tilde{q})=m(\tilde{g})$ ATLAS-CONF-2013-047 0 Yes 1.7 TeV MSUGRA/CMSSM 3-6 jets $1 e, \mu$ Yes 20.3 1.2 TeV any $m(\tilde{q})$ ATLAS-CONF-2013-062 7-10 jets Yes 20.3 any m(ã) MSUGRA/CMSSM 0 1.1 TeV 1308.1841 Searches 0 2-6 jets Yes 20.3 740 GeV $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_1^0$ $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ ATLAS-CONF-2013-047 0 2-6 jets Yes 20.3 1.3 TeV $m(\tilde{\chi}_{1}^{0})=0$ GeV ATLAS-CONF-2013-047 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\chi$ $1 e, \mu$ 3-6 jets Yes 20.3 1.18 TeV $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ ATLAS-CONF-2013-062 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_1^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\tilde{\chi}^{\prime}$ $2e,\mu$ 0-3 jets 20.3 1.12 TeV $m(\tilde{\chi}_{1}^{0})=0$ GeV ATLAS-CONF-2013-089 Inclusive GMSB (Î NLSP) $2e,\mu$ 2-4 jets $\tan\beta < 15$ Yes 4.7 1.24 TeV 1208.4688 $tan\beta > 18$ GMSB (*l* NLSP) 1-2 *τ* 0-2 jets Yes 20.7 1.4 TeV ATLAS-CONF-2013-026 GGM (bino NLSP) 2γ 20.3 $m(\tilde{\chi}_1^0) > 50 \text{ GeV}$ ATLAS-CONF-2014-001 Yes 1.28 TeV GGM (wino NLSP) $1 e, \mu + \gamma$ Yes 4.8 619 GeV $m(\tilde{\chi}_{1}^{0})>50 \text{ GeV}$ ATLAS-CONF-2012-144 GGM (higgsino-bino NLSP) 4.8 $m(\tilde{\chi}_{1}^{0})>220 \, GeV$ 1b γ Yes 900 GeV 1211.1167 GGM (higgsino NLSP) 0-3 jets 5.8 m(*H*)>200 GeV $2 e, \mu (Z)$ Yes ATLAS-CONF-2012-152 690 GeV Gravitino LSP $m(\tilde{g}) > 10^{-4} \text{ eV}$ 0 mono-jet Yes 10.5 645 GeV ATLAS-CONF-2012-147 l gen. med. $\tilde{g} \rightarrow b\bar{b}\tilde{\chi}$ 0 3bYes 20.1 1.2 TeV $m(\tilde{\chi}_1^0) < 600 \, \text{GeV}$ ATLAS-CONF-2013-061 $\tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$ 0 7-10 jets Yes 20.3 1.1 TeV $m(\tilde{\chi}_{1}^{0}) < 350 \, GeV$ 1308.1841 0-1 e, µ $\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$ 3 b Yes 20.1 $m(\tilde{\chi}_{1}^{0}) < 400 \, GeV$ 1.34 TeV ATLAS-CONF-2013-061 200 0-1 e, µ $\tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{\dagger}$ 20.1 1.3 TeV $m(\tilde{\chi}_{1}^{0}) < 300 \, GeV$ ATLAS-CONF-2013-061 3 b Yes $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$ 0 2 b Yes 20.1 ĵ, 100-620 GeV $m(\tilde{\chi}_{1}^{0}) < 90 \text{ GeV}$ 1308.2631 $\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$ 2 e, µ (SS) 0-3 b 20.7 275-430 GeV $m(\tilde{\chi}_1^{\pm})=2 m(\tilde{\chi}_1^0)$ ATLAS-CONF-2013-007 Yes \tilde{b}_1 squarks 1-2 e, µ 110-167 GeV 1208.4305. 1209.2102 $\tilde{t}_1 \tilde{t}_1$ (light), $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 1-2 b Yes 4.7 \tilde{t}_1 $m(\tilde{\chi}_{1}^{0})=55 \text{ GeV}$ $2 e, \mu$ 0-2 jets 130-210 GeV $\tilde{t}_1 \tilde{t}_1$ (light), $\tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ 20.3 Yes \tilde{t}_1 $m(\tilde{\chi}_{1}^{0}) = m(\tilde{t}_{1}) - m(W) - 50 \text{ GeV}, m(\tilde{t}_{1}) < < m(\tilde{\chi}_{1}^{\pm})$ 1403.4853 $\tilde{t}_1\tilde{t}_1$ (medium), $\tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$ 2 e, µ 2 jets Yes 20.3 215-530 GeV ĩ $m(\tilde{\chi}_{1}^{0})=1 \text{ GeV}$ 1403.4853 gen. ect pr $\tilde{t}_1 \tilde{t}_1$ (medium), $\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$ 0 2 b Yes 20.1 ĩ1 150-580 GeV $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}_{1}^{\pm}) - m(\tilde{\chi}_{1}^{0}) = 5 \text{ GeV}$ 1308.2631 $\tilde{t}_1 \tilde{t}_1$ (heavy), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ $\tilde{t}_1 \tilde{t}_1$ (heavy), $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$ $1 e, \mu$ 1 b Yes 20.7 200-610 GeV $m(\tilde{\chi}_1^0)=0 \text{ GeV}$ ATLAS-CONF-2013-037 ĩ 0 2bYes 20.5 ĩ 320-660 GeV $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ ATLAS-CONF-2013-024 0 mono-jet/c-tag Yes 20.3 90-200 GeV $m(\tilde{t}_1)-m(\tilde{\chi}_1^0) < 85 \, \text{GeV}$ ATLAS-CONF-2013-068 $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$ \tilde{t}_1 di 3 $\tilde{t}_1 \tilde{t}_1$ (natural GMSB) 150-580 GeV $2 e, \mu (Z)$ 1bYes 20.3 \tilde{t}_1 $m(\tilde{\chi}_1^0)>150 \text{ GeV}$ 1403.5222 \tilde{t}_2 $\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$ $3 e, \mu (Z)$ 1bYes 20.3 290-600 GeV $m(\tilde{\chi}_1^0) < 200 \, GeV$ 1403.5222 $\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$ $2e,\mu$ 0 Yes 20.3 90-325 GeV $m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ 1403.5294 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$ $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$ $2 e, \mu$ 0 Yes 20.3 140-465 GeV $m(\tilde{\chi}_1^0)=0$ GeV, $m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1403.5294 ect 20.7 $m(\tilde{\chi}_1^0)=0 \text{ GeV}, m(\tilde{\tau}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ ATLAS-CONF-2013-028 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$ 2τ Yes 180-330 GeV di II 3 e, µ $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} v \tilde{\ell}_{L} \ell(\tilde{\nu} v), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu} v)$ 0 Yes 20.3 700 GeV $m(\tilde{\chi}_{1}^{\pm}) = m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}) = 0, m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_{1}^{\pm}) + m(\tilde{\chi}_{1}^{0}))$ 1402.7029 $\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$ 1403.5294, 1402.7029 2-3 e, µ 0 Yes 20.3 420 GeV $m(\tilde{\chi}_1^{\pm})=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0$, sleptons decoupled $\chi_1^+\chi_2^- \rightarrow W\chi_1^- h\chi_1^ 1 e, \mu$ 2 b Yes 20.3 $m(\chi_1^{\perp}) = m(\chi_2^{\vee}), m(\chi_1^{\vee}) = 0$, sleptons decoupled ATLAS-CONF-2013-093 χ_1^-, χ_2^- 285 Ge\ Disapp. trk 1 jet Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Yes 20.3 270 GeV $m(\tilde{\chi}_{1}^{\pm})-m(\tilde{\chi}_{1}^{0})=160 \text{ MeV}, \tau(\tilde{\chi}_{1}^{\pm})=0.2 \text{ ns}$ ATLAS-CONF-2013-069 -ong-live Stable, stopped g R-hadron 0 1-5 jets Yes 22.9 $m(\tilde{\chi}_1^0)=100 \text{ GeV}, 10 \ \mu s < \tau(\tilde{g}) < 1000 \text{ s}$ ATLAS-CONF-2013-057 832 GeV GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$ $1-2 \mu$ 15.9 475 GeV 10<tanβ<50 ATLAS-CONF-2013-058 pa GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ 2γ Yes 4.7 230 GeV $0.4 < \tau(\tilde{\chi}_{1}^{0}) < 2$ ns 1304.6310 $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu \text{ (RPV)}$ 1 μ , displ. vtx -20.3 1.0 TeV 1.5 $< c\tau < 156$ mm, BR(μ)=1, m($\tilde{\chi}_1^0$)=108 GeV ATLAS-CONF-2013-092 $\lambda'_{311}=0.10, \lambda_{132}=0.05$ LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e + \mu$ 2 e, µ --4.6 1.61 TeV 1212.1272 LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ $\lambda'_{311}=0.10, \lambda_{1(2)33}=0.05$ $1 e, \mu + \tau$ --4.6 1.1 TeV 1212.1272 Bilinear RPV CMSSM $1 e, \mu$ 7 jets Yes 4.7 $m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 mm$ 1.2 TeV ATLAS-CONF-2012-140 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{v}_{\mu}, e \mu \tilde{v}_e$ $4 e, \mu$ 760 GeV Yes 20.7 $m(\tilde{\chi}_{1}^{0})>300 \text{ GeV}, \lambda_{121}>0$ ATLAS-CONF-2013-036 $\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_{\tau}$ 3 e,μ + τ Yes 20.7 350 GeV $m(\tilde{\chi}_1^0) > 80 \text{ GeV}, \lambda_{133} > 0$ ATLAS-CONF-2013-036 6-7 jets 20.3 BR(t)=BR(b)=BR(c)=0%ATLAS-CONF-2013-091 $\tilde{g} \rightarrow qqq$ 0 916 GeV 2 e, µ (SS) $\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow bs$ 0-3 b Yes 20.7 880 GeV ATLAS-CONF-2013-007 Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ 0 4 iets 4.6 sgluon 100-287 GeV incl. limit from 1110.2693 1210.4826 Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ 2 e, μ (SS) 14.3 sgluon ATLAS-CONF-2013-051 2 b Yes 350-800 GeV Of WIMP interaction (D5, Dirac χ) $m(\chi)$ <80 GeV, limit of<687 GeV for D8 ATLAS-CONF-2012-147 0 mono-jet Yes 10.5 704 GeV $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 8 \text{ TeV}$ 10^{-1} 1 Mass scale [TeV] partial data full data full data

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

Long-lived particles and RPV Analyses

• This talk will only cover analyses with updated results since Pheno2013 (*)

lived cles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$ Stable, stopped \tilde{g} R-hadron	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057		
rtig-	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$	ATLAS-CONF-2013-058	\star	
on oa	GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	1304.6310		
	$\tilde{q}\tilde{q}, \tilde{\chi}_{1}^{0} \rightarrow qq\mu$ (RPV)	ATLAS-CONF-2013-092	*	
RPV	$LFV \ pp \to \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \to e + \mu$	1212.1272		
	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$	1212.1272		
	Bilinear RPV CMSSM	ATLAS-CONF-2012-140		
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_e$	ATLAS-CONF-2013-036		
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_{\tau}$	ATLAS-CONF-2013-036		
	$\tilde{g} \rightarrow qqq$	ATLAS-CONF-2013-091	$\mathbf{\star}$	
	$\tilde{g} \rightarrow \tilde{t}_1 t, \tilde{t}_1 \rightarrow b s$	ATLAS-CONF-2013-007		

R-Parity Violating Supersymmetry & Long Lived Particles

• R-parity: $R = (-1)^{3(B-L)+2S}$ -> R = +1 for SM particle, R=-1 for superpartners

• Many SUSY models assume R-Parity Conservation (RPC)

-> Hinted at by proton stability

-> Lightest Supersymmetric Particle (LSP) is stable -> Good dark matter candidate

• However, R-Parity Violating (RPV) terms can be added into superpotential:

 $W_{RPV} = \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_j Q_j D_k + \kappa_i L_i H_2 + \lambda''_{ijk} D_j D_j D_k$

-> So long as lepton & baryon number violation is not simultaneous

• Long Lived Particles can exist if there are weak couplings (e.g. RPV & GMSB), small mass splittings (e.g. AMSB) or heavy mediator particles (e.g. split-SUSY)

Long Lived Particles in ATLAS

Search for Final States with a Muon and a Multi-Track Displaced Vertex

• In RPV models lightest neutralino can decay to a muon and two SM quarks

- RPV λ' coupling allows neutralino to be long lived
- -> Displaced vertex O(10mm) from primary vertex
- High energy muon used for triggering

6

- Background rejection makes use of high track multiplicity
- Also require displaced vertex to be in region with no material

-> expect 0.02 +/- 0.02 background events

 Standard ATLAS tracking assumes tracks come from primary vertex

-> Many tracks from displaced vertex missed

• Rerun tracking algorithms with looser requirements to increase identification efficiency

ATLAS-CONF-2013-092

Search for Final States with a Muon and a Multi-Track Displaced Vertex

No events observed in signal region

Interpret results using three different combinations of squark and neutralino mass as a function of lifetime

Sample	M _q	m _x
MH	700	494
ML	700	108
HL	1000	108

ATLAS-CONF-2013-092

7

Search for Direct Chargino Production in Events with Disappearing Tracks

8

• In AMSB if lightest gauginos are approximately mass-degenerate χ_{1}^{\pm} can be long lived

- Lifetime O(0.1ns) -> Decay late in tracker
- -> Few hits in outer layer of tracker
- Trigger on high p_{τ} ISR jet

Phys. Rev. D 88, 112006 (2013)

Search for Direct Chargino Production in Events with Disappearing Tracks

- Determine background from fit to the candidate track $p_{\scriptscriptstyle T}$ spectra

No excess over background observed

exclusion limits set in AMSB model parameter space

 $m_{\tilde{\gamma}^{\pm}}$ [GeV]

9

Search for Long-Lived Heavy Rhadrons

- Search for jets in empty bunch crossings
- Backgrounds from cosmic muons and beam halo muons (reject events with reconstructed muon segments)
- Analysis sensitive to Rhadrons with lifetimes between $10^{-6} 10^7$ seconds
- Uses 2011 (7TeV) & 2012 (8TeV) data

Phys. Rev. D 88, 112003 (2013)

10

Rhadrons are composites of a gluino or squark with SM partons

- May only deposit small amounts of energy in calorimeters
- Can undergo interactions with detector material
- Rhadron can be stopped by calorimeter

-> decay can be very delayed and still be detected

Search for Long-Lived Heavy Rhadrons

Leading jet	eading jet Cosmic region			Number of events in search region				
energy (GeV)	Muon veto	Events	Beam-halo bkgd.	Scaling	Cosmic	Beam-halo	Total background	Observed
50	No	1640	82 ± 40	3.1	4820 ± 570	900 ± 130	5720 ± 590	5396
50	Yes	2	1.1 ± 0.6	2.4	2.1 ± 3.6	12 ± 3	14.2 ± 4.0	10
100	Yes	1	0.8 ± 0.5	2.4	0.4 ± 2.7	6 ± 2	6.4 ± 2.9	5
300	Yes	1	$0.000^{+0.01}_{-0}$	2.4	2.4 ± 2.4	0.5 ± 0.4	2.9 ± 2.4	0

No excess over background observed

Phys. Rev. D 88, 112003 (2013)

11

Search for Long-Lived Sleptons

 In some models , eg GMSB, sleptons can be long lived

• Behave like heavy muons -> low β

• Combine time of flight (calorimeter & muon detectors) and energy loss (pixel detector) information to calculate

$m_{\beta} = p/\gamma\beta$

Look for pairs of LLP with large m_β

No events observed in signal region

Interpret results using GMSB with light stau as LLP

Search for Massive Particles Decaying into Multiple Quarks

13

• If R-Parity can be violated decay of gluinos and neutralinos leads to final states of many quarks

- Look for events with at least 6 jets
- Perform counting experiment
- Background extrapolated from low jet multiplicity regions using MC transfer factors

10 quark final state!

Interpret results for different neutralino masses, branching ratios to SM quarks & number of quarks in final state

ATLAS-CONF-2013-091

Conclusion

• Models containing Resonances, RPV & long-lived particles have unique and interesting signatures

- Challenging non-standard analysis techniques are required to investigate these models
- The excellent design & performance of the ATLAS detector makes these searches possible
- No experimental evidence for BSM theories observed yet
- Many analyses now make use of the full 8TeV dataset
- Looking forward to the increased discovery reach at 13TeV in run-2!

Backup Slides

Leading jet energy (GeV)	<i>R</i> -hadron model	Gluino/squark decay	Neutralino mass (GeV)	Gluino/squark n Expected	nass limit (GeV) Observed
100	Generic	$ ilde{g} ightarrow g/q ar{q} + ilde{\chi}^0$	$m_{\tilde{g}} - 100$	526	545
100	Generic	$\tilde{g} \rightarrow t\bar{t} + \tilde{\chi}^0$	$m_{\tilde{g}} - 380$	694	705
300	Generic	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	731	832
300	Generic	$\tilde{g} \rightarrow t\bar{t} + \tilde{\chi}^0$	100	700	784
300	Intermediate	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	615	699
300	Regge	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	664	758
100	Generic	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	$m_{\tilde{t}} - 200$	389	397
100	Generic	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	100	384	392
100	Regge	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	100	371	379
100	Regge	$\tilde{b} \rightarrow b + \tilde{\chi}^0$	100	334	344

Search for Massive Particles Decaying into Multiple Quarks

10 quark final state results table

Sample	Jet p _T cut [GeV]	# jets	# b-tags	Signal	Background	Data
$(m_{\tilde{g}}, m_{\tilde{y}_{1}^{0}}) = (400 \text{ GeV}, 50 \text{ GeV})$	100	7	0	1400±800	2460±350	2477
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (400 \text{ GeV}, 300 \text{ GeV})$	80	7	0	9000±4000	17200 ± 2100	15885
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (600 \text{ GeV}, 50 \text{ GeV})$	100	7	1	510±140	940±140	936
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (600 \text{ GeV}, 300 \text{ GeV})$	100	7	0	1700 ± 900	2460±350	2477
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (800 \text{ GeV}, 50 \text{ GeV})$	120	7	1	107±31	138±26	178
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (800 \text{ GeV}, 300 \text{ GeV})$	120	7	0	380±90	370±60	444
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1000 \text{ GeV}, 50 \text{ GeV})$	180	6	0	40±6	170 ± 40	187
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1000 \text{ GeV}, 300 \text{ GeV})$	140	7	0	50±13	105±25	107
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1000 \text{ GeV}, 600 \text{ GeV})$	180	7	0	10±5	6.1±2.2	4
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1200 \text{ GeV}, 50 \text{ GeV})$	180	7	0	1.9±1.0	6.1±2.2	4
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1200 \text{ GeV}, 300 \text{ GeV})$	180	7	0	3.2±1.4	6.1±2.2	4
$(m_{\tilde{g}}, m_{\tilde{\chi}_1^0}) = (1200 \text{ GeV}, 600 \text{ GeV})$	140	7	0	28±4	105±25	107

No Significant excess over Background observed