LHC Phenomenology of SO(10) Models with Yukawa Unification

B. Charles Bryant¹ Archana Anandakrishnan¹, Stuart Raby¹

¹The Ohio State University Department of Physics

Pheno 2014

Based on arXiv:1404.5628

SO(10) Models with Yukawa Unification

- Third family Yukawa unification in models, such as SO(10) or SU(4)_c × SU(2)_L × SU(2)_R, can place significant constraints on the low energy SUSY spectrum
- The choice of boundary conditions determines these constraints and can lead to dramatically different low energy SUSY spectra
- Requiring Yukawa unification and good fits to top, bottom, and tau masses limits the number of viable boundary conditions
- We consider two types of SO(10) boundary conditions:
 (i) universal gaugino masses
 (ii) non-universal gaugino masses with *effective "mirage"* mediation

A. Anandakrishnan, S. Raby, and A. Wingerter - PhysRevD.87.055005 A. Anandakrishnan and S. Raby - PhysRevLett.111.211801

- universal squark and slepton masses, m₁₆
- universal cubic scalar parameter, A₀
- universal gaugino masses, $M_{1/2}$
- non-universal Higgs masses, $m^2_{H_{u(d)}} = m^2_{10} \left(1 (+) \Delta^2_{m_H}
 ight)$
- Due to Yukawa unification of the third family at the GUT scale,

$$\tan\beta\approx 50$$

• Fitting the top, bottom, and tau masses restricts to the region of SUSY breaking parameter space with

$${\cal A}_0 pprox -2 m_{16}, \,\, m_{10} pprox \sqrt{2} m_{16}, \,\, m_{16} > {
m few \,\, TeV}, \,\, \mu, {\cal M}_{1/2} \ll m_{16}$$

(ii) non-universal gaugino masses with *effective "mirage"* mediation

• The gaugino masses are given by

$$\mathcal{M}_i = \left(1 + rac{g_G^2 b_i lpha}{16 \pi^2} \mathrm{log}\left(rac{\mathcal{M}_{Pl}}{m_{16}}
ight)
ight) \mathcal{M}_{1/2} \; ,$$

- α is the ratio of the anomaly mediation to gravity mediation contributions.
- universal scalar mass for the squarks and sleptons, m_{16}
- universal cubic scalar parameter, A₀
- non-universal Higgs mass parameters, m_{H_u} and m_{H_d}
- tan $\beta \approx 50$

Sector	Universal Gaugino Masses		Non-universal Gaugino Masses	#
gauge	$\alpha_{G}, M_{G}, \epsilon_{3}$	3	$\alpha_{G}, M_{G}, \epsilon_{3}$	3
SUSY (GUT scale)	$m_{16}, M_{1/2}, A_0, m_{H_u}, m_{H_d}$	5	$m_{16}, M_{1/2}, \alpha, A_0, m_{H_u}, m_{H_d}$	6
textures	λ	1	λ	1
SUSY (EW scale)	$ aneta$, μ	2	$ aneta$, μ	2
Total #		11		12

A global χ² analysis was performed by varying the GUT scale model parameters to fit 11 low energy observables, M_W, M_Z, G_F, α⁻¹_{em}, α_s(M_Z), M_t, m_b(m_b), M_τ, B(B → X_sγ), B(B_s → μ⁺μ⁻), and M_h
m₁₆, M_{1/2}, α are fixed

Benchmark Points

	Ud	DMa	DMb	COa	COb	Md
M _{1/2}	300	450	600	450	485	-200
α	0	1.5	2.3	2.54	2.61	9
μ	879	660	1199	1027	1035	-355
<i>m</i> ₁₆	20000	20000	29781	20000	20000	5000
χ^2 /d.o.f	0.58	0.92	0.86	1.07	1.19	0.41
$M_{\tilde{g}}$	1187	1130	1135	707	697	1107
$M_{\tilde{t}_1}$	3728	3612	5832	3928	3951	1799
$M_{\tilde{b}_1}$	4608	4770	7543	5453	5431	1592
$M_{\tilde{\chi}_1^0}^{-1}$	195	474	799	614	655	307
$M_{\tilde{\chi}_2^0}$	382	557	836	629	683	360
$M_{\widetilde{\chi}_1^+}$	382	555	836	615	656	310
$M_{\widetilde{\chi}_2^+}$	888	691	1210	1037	1045	426
$\mathcal{B}(\tilde{\widetilde{g}} ightarrow g \widetilde{\chi}_{i}^{0})$	2%	11%	4%	44%	84%	1%
$\mathcal{B}(\widetilde{g} ightarrow t\overline{t}\widetilde{\chi}_1^0)$	7%	2%	0%	0%	0%	8%
${\cal B}(\widetilde{g} o t \overline{t} \widetilde{\chi}_2^0)$	14%	4%	0%	0%	0%	8%
${\cal B}(\widetilde{g} o b \overline{b} \widetilde{\chi}_1^0)$	3%	4%	14%	51%	15%	14%
${\cal B}(\widetilde{g} o b ar{b} \widetilde{\chi}_2^{ar{0}})$	13%	9%	38%	2%	0%	12%
$\mathcal{B}(\widetilde{g} ightarrow tb \widetilde{\chi}_1^{\pm})$	60%	32%	42%	0%	0%	32%
$\mathcal{B}(\widetilde{g} ightarrow tb \widetilde{\chi}_2^{\pm})$	0%	20%	0%	0%	0%	16%

• Branching ratios calculated with SDECAY

A. Djouadi, Y. Mambrini, and M. Muhlleitner - j.cpc.2005.01.012

B.C.B., A.A., S.R. (OSU)

- The ATLAS and CMS collaborations perform searches for the gluino and provide an allowed number of events from new physics
- For both boundary conditions, the scalars are sufficiently heavier than the gauginos
- No electroweakino contamination in gluino searches considered
- ullet ightarrow Directly place bounds on the gluino masses in our models.

- The program CheckMATE was used to evaluate bounds on the gluino mass for each model.
- CheckMATE requires as input a file containing generated events and the production cross section of the sparticles of interest along with the total 1σ uncertainty on the cross section.
- Number of observed events in a given signal region \rightarrow 95% CL upper limit on the allowed number of events by new physics, $S_{E\times p}^{95}$
- In CheckMATE, the number of signal events S is determined for each signal region. The total 1σ uncertainty ΔS is estimated from user input.
- A model is considered excluded if ratio $r \ge 1$, where

$$r\equiv rac{S-\Delta S}{S_{\mathsf{Exp}}^{95}}\;.$$

M. Drees, H. Dreiner, D. Schmeier, J. Tattersall, and J.S. Kim - hep-ph/1312.2591

- ATLAS analysis ATLAS-CONF-2013-061 is the most constraining analysis for our models with the exception of the points with compressed spectra
- The ATLAS-CONF-2013-061 analysis is a search for final states with large missing transverse momentum, at least four, six, or seven jets, at least three jets tagged as *b*-jets, and either zero or at least one lepton.
- Points Ud, Md, and DMa are ruled out
- Due to their compressed spectra, points DMb, COa, and COb are not ruled out
- $\bullet\, \to\, M_{\widetilde{g}} \lesssim 1.2$ TeV ruled out unless spectrum is compressed

Tech. Rep. ATLAS-CONF-2013-061, CERN, Geneva, Jun, 2013.

- 6 dominant branching ratios in our models: $b\bar{b}\tilde{\chi}_{1}^{0}$, $t\bar{t}\tilde{\chi}_{1}^{0}$, $tb\tilde{\chi}_{1}^{\pm}$, $b\bar{b}\tilde{\chi}_{2}^{0}$, $t\bar{t}\tilde{\chi}_{2}^{0}$, and $tb\tilde{\chi}_{2}^{\pm}$.
- Bounds for simplified models defined by 100% branching fractions to $b\bar{b}\tilde{\chi}_{1}^{0}$, $t\bar{t}\tilde{\chi}_{1}^{0}$, or $tb\tilde{\chi}_{1}^{\pm}$ are approximately equal.
- Simplified models defined by 100% branching fractions to $t\overline{t}\tilde{\chi}_2^0$ and $tb\tilde{\chi}_2^{\pm}$ receive nearly the same limits.
- Our models are well approximated by models with branching fractions to combinations of $tb\tilde{\chi}_1^{\pm}$, $b\bar{b}\tilde{\chi}_2^0$, and $t\bar{t}\tilde{\chi}_2^0$.
- We obtain exclusion limits for models defined by branching fractions to all combinations of these three decay modes and record the bounds on a triangle

• Lowest gluino masses allowed by ATLAS-CONF-2013-061. All masses are in GeV. The black star and red dot represent the universal and large α cases, respectively. ($M_{\tilde{\chi}_1^0} = 200$ GeV, $M_{\tilde{\chi}_2^0} = 300$ GeV)

A. Anandakrishnan and C. Hill - hep-ex/1403.4294

B.C.B., A.A., S.R. (OSU)

• The lower bound on $M_{\tilde{g}}$ in Yukawa-unified SO(10) SUSY GUTs is generically ~ 1.2 TeV at the 1σ level unless the spectrum is compressed

B.C.B., A.A., S.R. (OSU)

Yukawa Unified Models