ANATOMIZING EXOTIC PRODUCTION THE HIGGS BOSON

Felix Yu Fermilab

[arXiv:1404.2924]

Phenomenology Symposium, U. of Pittsburgh May 6, 2014

Higgs Couplings

- Signal strength defined as $\mu_i = \sigma_i/\sigma_{i,SM}$
- Cannot combine separate search channels without an underlying model assumption (e.g. SM)

Making assumptions

- Thus far, coupling fits have all assumed no new production modes for the Higgs
 - A signal strength different from 1 is New Physics
 - Variation away from 1 assumes NP only manifests as a rescaling of a SM production rate with SM kinematics (i.e. known efficiencies)
 - Moreover, effective Lagrangians involving only SM fields necessarily do not include possibilities for on-shell NP states
- Exploring the possibility of exotic production is feasible with current and upcoming data

Testing exotic production

- Consider the concrete case of chargino-neutralino production at LHC
 - Gives final states of W[±]Z + MET or W[±]h + MET
 (kinematically forbid intermediate sleptons)
 - Controlled by Drell-Yan production, not Higgs couplings

Exotic production rates

Electroweakino searches: W[±]h + MET

Current limits in lv(bb)+MET, SS dileptons + jj(j) +
 MET remove SM Wh production via hard m_T cut –
 no sensitivity near the Higgs mass splitting line

Chargino-neutralino BRs

Two benchmark models

2000

2500

200

500

2000

225

213 GeV

215 GeV

57.8 GeV

 m_A

trilinear A_0

 M_1

 M_2

 M_3

 μ

 χ_1^{\pm} mass

 χ_2^0 mass

 χ_1^0 mass

Parameter	Model A	Model B	$BR(\chi_2^0 \to h\chi_1^0)$	66.2%	79.1%
M_0	2000	2000	$\mathrm{BR}(\chi_2^0 \to Z \chi_1^0)$	33.8%	20.9%
aneta	10	10	$BR(\chi_2^{\pm} \to W^{\pm} \chi_1^0)$	100%	100%

 $\sigma(\chi_1^+\chi_2^0)$

 $\sigma(\chi_1^-\chi_2^0)$

 Ωh^2

 $\sigma_{SI,p}$

 $\sigma_{SD,p}$

 $\sigma_{SI,n}$

 $\sigma_{SD,n}$

 $Br(h \to \chi_1^0 \chi_1^0)$

0.126

0.058

0.0211

0.035

0.622

0.295

0.117

 3.6×10^{-5}

 $7.3 \times 10^{-10} \, | \, 2.2 \times 10^{-11} \, |$

 $5.9 \times 10^{-5} \mid 3.3 \times 10^{-7}$

 $7.4 \times 10^{-10} \, | \, 2.3 \times 10^{-11} \, |$

 4.5×10^{-5} | 2.6×10^{-7}

2000

2500

200

300

2000

800

191 GeV

191 GeV

61.5 GeV

Two benchmark models

10

2000

2500

200

500

213 GeV

215 GeV

57.8 GeV

Mass difference between

NLSPs and LSP is close to m_h

 $\tan \beta$

 m_A

trilinear A_0

 M_1

 M_2

 χ_1^{\pm} mass

 χ_2^0 mass

 χ_1^0 mass

Parameter	Model A	Model B	$BR(\chi_2^0 \to h\chi_1^0)$	66.2%	79.1%
M_0	2000	Can have	large exotic $\binom{0}{1}$	33.8%	20.9%

production rates

2000

2500

200

300

191 GeV

 $191~{\rm GeV}$

61.5 GeV

 (χ_1^0)

 $\sigma(\chi_1^+\chi_2^0)$

 $\sigma(\chi_1^-\chi_2^0)$

 Ωh^2

 $\sigma_{SI,p}$

 $\sigma_{SD,p}$

 $\sigma_{SI,n}$

 $\sigma_{SD,n}$

 $Br(h \to \chi_1^0 \chi_1^0)$

100%

0.126

0.058

0.0211

0.035

 $7.3 \times 10^{-10} \, | \, 2.2 \times 10^{-11} \, |$

 $5.9 \times 10^{-5} \mid 3.3 \times 10^{-7}$

 $7.4 \times 10^{-10} \, | \, 2.3 \times 10^{-11} \, |$

 $4.5 \times 10^{-5} \mid 2.6 \times 10^{-7}$

100%

0.622

0.295

0.117

 3.6×10^{-5}

MSSM illustration: chargino-neutralino

production

- Use MadGraph 5 for signal generation
- Implement ATLAS and CMS diphoton, ZZ and WW analyses
 - Important to use high-resolution final states in order to distinguish possible contamination from NP production processes
 - The ττ and bb analyses are usually MVA/BDT and intractable for theorists to reproduce
- Illustrate how this exotic production mode is categorized under current search strategy
 - Other analyses dedicated to single subleading SM production modes are not as useful in disentangling exotic production

ATLAS categorization efficiencies

Analysis	Category	Model A	Model B
	Lepton	6.3%	6.6%
	MET significance	28.2%	22.7%
$\gamma\gamma$	Low-mass two-jet	1.4%	1.9%
	High-mass two-jet	0.2%	0.2%
	Untagged	9.1%	14.0%
	ggF-like	21.5%	21.4%
ZZ^*	VBF-like	0.2%	0.2%
	VH-like	7.1%	7.1%
	$N_{\rm jet} = 0$	1.6%	1.7%
WW*	$N_{\rm jet} = 1$	3.4%	3.1%
	$N_{ m jet} \ge 2$	<0.1%	<0.1%

Extracted ATLAS γγ efficiency

Before cuts: Expect about 8 (41) $\gamma\gamma$ events for Model A (B) 0 (2) ZZ* to 4l events, 86 (429) events for h \rightarrow lvlv, 347 (1730) events for h \rightarrow lvjj

	ggF	VBF	WH	ZH	$t ar{t} H$
$N_{\rm events}$ for 20.7 fb ⁻¹	888.2	73.5	31.9	18.9	5.9
Lepton	0.0%	0.0%	5.3%	2.2%	8.5%
E_T miss significance	0.0%	0.0%	1.3%	3.0%	2.4%
Low-mass two-jet	0.2%	0.0%	2.9%	2.9%	0.0%
Tight high-mass two-jet	0.2%	8.0%	0.0%	0.0%	0.0%
Loose high-mass two-jet	0.3%	3.7%	0.0%	0.0%	0.0%
Untagged	36.0%	25.8%	21.9%	22.2%	17.0%

CMS categorization efficiencies

Analysis	Category	Model A	Model B
	Muon	5.2%	5.1%
	Electron	5.1%	5.1%
$\gamma\gamma$	Dijet tight	0.1%	0.1%
	Dijet loose	0.3%	0.3%
	E_T miss	26.7%	16.8%
	Untagged	20.2%	32.5%
ZZ^*	Category 1, $N_{\rm jet} \le 1$	22.1%	22.9%
	Category 2, $N_{\rm jet} \ge 2$	11.6%	10.8%
WW^*	0-jet	0.3%	0.4%
	1-jet	1.0%	1.2%

Extracted CMS $\gamma\gamma$ efficiency

Before cuts: Expect about 8 (41) $\gamma\gamma$ events for Model A (B) 0 (2) ZZ* to 4l events, 86 (429) events for h \rightarrow lvlv, 347 (1730) events for h \rightarrow lvjj

	ggF	VBF	VH	t ar t H
$N_{\rm events}$ for 19.6 fb ⁻¹	861.1	70.5	50.0	5.8
Muon	0.0%	< 0.1%	2.2%	5.0%
Electron	< 0.1%	< 0.1%	1.4%	3.1%
Dijet tight	0.2%	10.3%	< 0.1%	0.2%
Dijet loose	0.6%	8.3%	0.4%	1.0%
E_T miss	< 0.1%	< 0.1%	2.2%	3.4%
Untagged combined	38.3%	25.7%	31.1%	32.9%

Inclusive/exclusive $\gamma\gamma$ rates

- Categorizing by multiplicities still leaves ambiguities in identifying production modes
 - Gluon fusion is catch-all
 - Contamination by NP can be significant
- Cannot use a rescaling of a SM production mode to capture the NP effects
- Need shapes to disentangle

ATLAS-CONF-2013-012 13

Tests for exotic production

- Need counts and kinematics of associated objects
- Also should probe the p_T of the Higgs candidates

Testing for exotic production

- Also should look at MET distributions
- Disentangling these shapes requires high-resolution final states (e.g. 4l or $\gamma\gamma$)

Summary

- The current suite of tests for the presence of new physics in Higgs data is incomplete
- Exotic Higgs production is a new class of models to probe with current and future data
- Advocate experiments to publish differential distributions of Higgs candidates and kinematics of associated objects
- Exotic production of the Higgs could be the initial signature of new physics present in current data

Negative signal strength

- Negative signal strength corresponds to observing fewer events than the background expectation
- Still require that the "negative signal" contribution give a non-negative number of events (equivalently, a positive probability density function)

$$\tilde{\lambda}(\mu) = \begin{cases} \frac{L(\mu, \hat{\hat{\boldsymbol{\theta}}}(\mu))}{L(\hat{\mu}, \hat{\boldsymbol{\theta}})} & \hat{\mu} \geq 0, \\ \frac{L(\mu, \hat{\hat{\boldsymbol{\theta}}}(\mu))}{L(0, \hat{\hat{\boldsymbol{\theta}}}(0))} & \hat{\mu} < 0. \end{cases}$$

ATLAS, 1207.0319 18

Higgs Measurements – introducing NP

- Alternatively, can consider higher dimension operators and fit for coefficients
- As an illustration: light Higgs as a Goldstone boson

$$\begin{split} \Delta \mathcal{L}_{SILH} &= \frac{\bar{c}_{H}}{2v^{2}} \, \partial^{\mu} \big(H^{\dagger} H \big) \, \partial_{\mu} \big(H^{\dagger} H \big) + \frac{\bar{c}_{T}}{2v^{2}} \, \Big(H^{\dagger} \overleftrightarrow{D^{\mu}} H \Big) \Big(H^{\dagger} \overleftrightarrow{D}_{\mu} H \Big) - \frac{\bar{c}_{6} \, \lambda}{v^{2}} \, \big(H^{\dagger} H \big)^{3} \\ &+ \Big(\Big(\frac{\bar{c}_{u}}{v^{2}} \, y_{u} \, H^{\dagger} H \, \bar{q}_{L} H^{c} u_{R} + \frac{\bar{c}_{d}}{v^{2}} \, y_{d} \, H^{\dagger} H \, \bar{q}_{L} H d_{R} + \frac{\bar{c}_{l}}{v^{2}} \, y_{l} \, H^{\dagger} H \, \bar{L}_{L} H l_{R} \Big) + h.c. \Big) \\ &+ \frac{i \bar{c}_{W} \, g}{2m_{W}^{2}} \, \Big(H^{\dagger} \sigma^{i} \overleftrightarrow{D^{\mu}} H \Big) \, (D^{\nu} W_{\mu\nu})^{i} + \frac{i \bar{c}_{B} \, g'}{2m_{W}^{2}} \, \Big(H^{\dagger} \overleftrightarrow{D^{\mu}} H \Big) \, (\partial^{\nu} B_{\mu\nu}) \\ &+ \frac{i \bar{c}_{HW} \, g}{m_{W}^{2}} \, (D^{\mu} H)^{\dagger} \sigma^{i} (D^{\nu} H) W_{\mu\nu}^{i} + \frac{i \bar{c}_{HB} \, g'}{m_{W}^{2}} \, (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{\bar{c}_{\gamma} \, g'^{2}}{m_{W}^{2}} \, H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{c}_{g} \, g_{S}^{2}}{m_{W}^{2}} \, H^{\dagger} H G_{\mu\nu}^{a} G^{a\mu\nu} \, , \end{split}$$

Giudice, Grojean, Pomarol, Rattazzi (hep-ph/0703164) Contino, Ghezzi, Grojean, Muhlleitner, Spira (1303.3876) Azatov, Contino, Iura, Galloway (1308.2676) + more

Expanding to more models

- Other models with similar kinematics and cascade decay objects will give similar efficiencies
 - Rate is largely controlled by mass scale of SUSY parents
- RPC SUSY will be typically limited by MET significance bin of the

diphoton analysis

Diphoton 8 TeV
counts: expected
background and SM
signal contributions
Can constrain
chargino-neutralino
production along
Higgs mass splitting
line

Expected signal and estimated background							
T . 1	SM Higgs boson expected signal ($m_{\rm H}$ =125 GeV)						

Ex	ent classes	Sivi riiggs bosoit expected signal (mH-125 dev)				Dackground				
Lv	CITT CIASSES						$\sigma_{ m eff}$	FWHM/2.35		
		Total	ggH	VBF	VH	ttH	(GeV)	(GeV)	(ev./	GeV)
-1	Untagged 0	3.2	61.4%	16.8%	18.7%	3.1%	1.21	1.14	3.3	± 0.4
1 fb	Untagged 1	16.3	87.6%	6.2%	5.6%	0.5%	1.26	1.08	37.5	± 1.3
Ŀ.	Untagged 2	21.5	91.3%	4.4%	3.9%	0.3%	1.59	1.32	74.8	± 1.9
TeV	Untagged 3	32.8	91.3%	4.4%	4.1%	0.2%	2.47	2.07	193.6	± 3.0
7	Dijet tag	2.9	26.8%	72.5%	0.6%	-	1.73	1.37	1.7	± 0.2
-1	Untagged 0	17.0	72.9%	11.6%	12.9%	2.6%	1.36	1.27	22.1	± 0.5
fb_	Untagged 1	37.8	83.5%	8.4%	7.1%	1.0%	1.50	1.39	94.3	± 1.0
9.6	Untagged 2	150.2	91.6%	4.5%	3.6%	0.4%	1.77	1.54	570.5	± 2.6
\vdash	Untagged 3	159.9	92.5%	3.9%	3.3%	0.3%	2.61	2.14	1060.9	\pm 3.5
TeV	Dijet tight	9.2	20.7%	78.9%	0.3%	0.1%	1.79	1.50	3.4	± 0.2
8	Dijet loose	11.5	47.0%	50.9%	1.7%	0.5%	1.87	1.60	12.4	± 0.4
	Muon tag	1.4	0.0%	0.2%	79.0%	20.8%	1.85	1.52	0.7	± 0.1
	Electron tag	0.9	1.1%	0.4%	78.7%	19.8%	1.88	1.54	0.7	± 0.1
	$E_{\mathrm{T}}^{\mathrm{miss}}$ tag	1.7	22.0%	2.6%	63.7%	11.7%	1.79	1.64	1.8	± 0.1

Background

CMS PAS HIG-13-001

Extracted ATLAS ZZ* and WW* effs.

	$ggF+t\bar{t}H$	VBF	WH+ZH
$N_{\rm events}$ for 20.7 fb ⁻¹	50.8	4.1	2.8
ggF-like	26.6%	19.3%	23.0%
VBF-like	0.6%	10.5%	0.4%
VH-like	0.1%	0.0%	5.0%

	Signal
$N_{\rm events}$ for 20.7 fb ⁻¹	11029
0-jet	0.907%
1-jet	0.372%
≥ 2 -jet	0.099%

Extracted CMS ZZ* and WW* effs.

	ggF	VBF	WH	ZH	$t ar{t} H$
$N_{\text{events}} \text{ for } 5.1 \text{ fb}^{-1} + 19.6 \text{ fb}^{-1}$	60.9	5.0	2.2	1.3	0.4
0/1-jet	25.3%	14.0%	12.6%	16.1%	0.0%
Dijet	2.6%	17.3%	9.5%	12.3%	20.3%

	ggF	VBF+VH
$N_{\rm events}$ for 19.4 fb ⁻¹	8852	1212
0-jet	1.62%	0.27%
1-jet	0.60%	0.79%

Electroweakino searches: W[±]Z + MET

 Current limits in multilepton final state (assuming 100% branching fraction to WZ + MET)

