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• Many ideas for 
physics beyond the 
Standard Model 

• So far the LHC has 
yet to find this new 
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• Most analyses are 
optimized for a 
particular signature 
(e.g. mSUGRA).

• Can we discover “Not Yet Thought Of” theories?
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• We would like to be as sensitive to new 
physics as possible  

• Without optimizing for a particular signal 
model  

• We take our inspiration from the  
Matrix Element Method, which you 
probably just heard about
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Neyman-Pearson Lemma 
Actually Neyman and 

Pearson were roughly the 
same age. Google works in 

mysterious ways...
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In a mathematically well-defined sense, the best choice of test statistic for 
distinguishing between two hypotheses (like “signal” and “background”) is 
the likelihood ratio/ discriminant 
 
 
 
 
 
where H0 and H1 are two alternative hypotheses and E is the data in an experiment 



Neyman-Pearson Lemma 
Actually Neyman and 

Pearson were roughly the 
same age. Google works in 

mysterious ways...

8
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Suggests that the likelihood will be an optimal variable.



Matrix Element Method

!

• Normalized to the total cross section 

• With integrals over transfer functions, invisible momenta, 
etc. 

• Use of this likelihood = “Matrix Element Method”
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• In particle physics, 
the likelihood/ we 
use the expression 
for probability on the 
right:



• In the Neyman-Pearson Lemma we needed a 
likelihood ratio. 

• Need to know both signal and background 
likelihood to compute this ratio 

• For signal independence, use  
background likelihood as a test statistic. 

• Matrix element variables still “know a lot” about 
the background so should be optimal at 
rejecting background
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Background Likelihood
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As an example, we consider 20 event pseudoexperiments 
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12



Background Likelihood

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-240 -220 -200 -180 -160
Sum of log MEKD values in a pseudoexperiment

125 GeV Higgs Background

Small Z Width

Processes: qq → 4ℓ background 
13



Background Likelihood

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

-240 -220 -200 -180 -160
Sum of log MEKD values in a pseudoexperiment

125 GeV Higgs Background

Small Z Width

Processes: qq → 4ℓ background, ΓZ → ΓZ/5 
14



Background Likelihood
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We take our 20 “data” events and evaluate the sum of MEKD values.
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Background Likelihood

p-value is shaded region
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• p-value from likelihood distribution calculated 
from Monte Carlos 

• so reducible backgrounds, detector effects, 
NLO (if your MC has it) etc. are included 
automatically 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• I’ve argued for using the background matrix 
element as a “test statistic” for discovering 
signals in a model-independent way  

• Now I’m going to present some related ideas in 
which we use similar tools to obtain flat 
background distributions
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Why?
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When your background is flat…
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It’s easy to discover an unexpected signal.
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Example: NFL Scores

• Excess in scores that end in “7”, “3”, or “4” evidence that 
scores are quantized in units of “7” or “3”.

http://blogs.mathworks.com/community/2013/01/07/football-squares-with-matlab/
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http://blogs.mathworks.com/community/2013/01/07/football-squares-with-matlab/


December 23, 1972 
13 - 7 Steelers!!!
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• We learned about the structure of football from deviations 
from flatness in distributions. 

• Can we do the same in particle physics?  

• How do we make background distributions flat?
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Background Ranking

• Want to flatten the background distribution of ME-based 
variable
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Background Ranking
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Background Ranking
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Background Ranking

28

potential 
signals



Background Ranking

29

potential 
signals

If we take our normalization from data, 
deficits will also indicate signals.



Simpler Approach: Quantile Bins
• A mini-version of ranking.  Make quantile bins in ME(ℇ) 

and other variables (here four-lepton invariant mass)
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Like the NFL scores example above.

Background Only: One Pseudoexperiment
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Here we consider 150 BG events.
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Quantile bins made with large MC set— not the data.

Background Only: One Pseudoexperiment
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Simpler Approach: Quantile Bins
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and other variables (here four-lepton invariant mass)
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Relatively flat with some fluctuations.

Background Only: One Pseudoexperiment
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Simpler Approach: Quantile Bins
• A mini-version of ranking.  Make quantile bins in ME(ℇ) 

and other variables (here four-lepton invariant mass)

34

On average, BG is flat (that was our goal!)

Background Only: Average of 400 Pseudoexperiments
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Simpler Approach: Quantile Bins
• A mini-version of ranking.  Make quantile bins in ME(ℇ) 

and other variables (here four-lepton invariant mass)
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Now we consider 150 events in total, but 60 are signal.

Signal and Background: One Pseudoexperiment
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Simpler Approach: Quantile Bins
• A mini-version of ranking.  Make quantile bins in ME(ℇ) 

and other variables (here four-lepton invariant mass)
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Normalization from data: signal also causes deficits.

Signal and Background: One Pseudoexperiment
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Simpler Approach: Quantile Bins
• A mini-version of ranking.  Make quantile bins in ME(ℇ) 

and other variables (here four-lepton invariant mass)
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Signal + Background pseudoexperiments averaged.

Signal and Background: Average of 400 Pseudoexperiments

 110  120  130  140  150  160  170

Four-lepton invariant mass (GeV)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

M
EK

D
 V

al
ue

 5

 10

 15

 20

 25

 30

 35



Analytic Flattening

• Of course we can also obtain flat distributions by 
weighing contributions to (potentially multivariable) 
distributions by the inverse of the background PDF  

• To explain this, I am going to invoke Leonardo da Vinci 
and aliens…
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Conclusions
• Important to develop model independent ways to search for signal 

• This can be done in a straightforward, sensitive way using the background 
matrix element. 

• Related techniques allow backgrounds to be flattened— giving an intuitive 
and general understanding of the significance of possible signals. 

• Ranking 

• Quantile Binning 

• Reweighting  

• Looking forward to the discovery of unexpected signals at the LHC!
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