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So far the LHC has
vet to find this new
physics.

Most analyses are
optimized for a
particular signature

(e.g. MSUGRA).

Can we discover “Not Yet

3

hought Of” theories?



e \We would like to be as sensitive to new
physics as possible

o Without optimizing for a particular signal




Neyman-Pearson Lemma

Actually Neyman and
Pearson were roughly the
same age. Google works in
mysterious ways...

In a mathematically well-defined sense, the best choice of test statistic for
distinguishing between two hypotheses (like “signal” and “background”) is

the likelihood ratio/ discriminant

where Ho and H1 are two alternative hypotheses and E is the data in an experiment



Neyman-Pearson Lemma

Actually Neyman and
Pearson were roughly the
same age. Google works in
mysterious ways...

In a mathematically well-defined sense, the best choice of test statistic for
distinguishing between two hypotheses (like “signal” and “background”) is

the likelihood ratio/ discriminant

where Ho and H1 are two alternative hypotheses and E is the data in an experiment

Suggests that the likelihood will be an optimal variable.
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Matrix Element Method

* |n particle physics,
the likelihood/ we

fr(z1) fi(z2)
Z/dwld 2 28T1T9

use the expression 11 [ Lo T({a:} {p:})
for probability on the Lu;,/ o 32E] Lmbl g
’Ight |MA(B),kl({q.7})| ;

e Normalized to the total cross section

e With integrals over transfer functions, invisible momenta,
=i

e Use of this likelihood = “Matrix Element Method”



* Inthe Neyman-Pearson Lemma we needed a
Ikelihood ratio.

 Need to know both signal and background
Ikelihood to compute this ratio




Background Likelinood

-240 -220 -200 -180 -160
Sum of log MEKD values in a pseudoexperiment

As an example, we consider 20 event pseudoexperiments
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Background Likelinood

125 GeV Higgs Background

-240 -220 -200 -180 -160
Sum of log MEKD values in a pseudoexperiment

Processes: gluon fusion Higgs — 44
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Background Likelinood

-240 -220 -200 -180 -160
Sum of log MEKD values in a pseudoexperiment

Processes:

13



Background Likelinood

-240 -220 -200 -180 -160
Sum of log MEKD values in a pseudoexperiment

Processes:
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Background Likelinood

Data Value

-240 -220 -200 -180 -160
Sum of log MEKD values in a pseudoexperiment

We take our 20 “data” events and evaluate the sum of MEKD values.
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Background Likelinood

Data Value

pa

-240 -220 -200 -180 -160
Sum of log MEKD values in a pseudoexperiment

p-value Is shaded region

16



e p-value from likelihood distribution calculated
from Monte Carlos




e |'ve argued for using the background matrix
ement as a “test statistic” for discovering
gnals in a model-independent way
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Example: NFL Scores

Last Digit of Team A's Score
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o
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http://blogs.mathworks.com/community/2013/01/07/football-squares-with-matlab/

—XCcess in scores thatend in “77, “3”, or “"4” evidence that
scores are quantized in units of “7” or “3".
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http://blogs.mathworks.com/community/2013/01/07/football-squares-with-matlab/




e We learned about the structure of football from deviations
from flatness

n distributions.




Background Ranking

Normalized Distribution

0 —]

1e-07 1e-06 1e-05 0.0001 0.001 0.01

Background Squared Matrix Element

e Want to flatten the background distribution of ME-based
variable

25



Background Ranking

Normalized Distribution

—

1e-07 1e-06 1e-05 0.0001 0.001 0.01

Background Squared Matrix Element
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Background Ranking




Background Ranking




Background Ranking

! !

potential
signals

It we take our normalization from data,
deficits will also indicate signals.
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Simpler Approach: Quantile Bins

* A mini-version of ranking. Make guantile bins in ME(€)
and other variables (here four-lepton invariant mass)

Background Only: One Pseudoexperiment
0.01

0.001

0.0001

@
=
S
>
O
N'd
L
=

1e-05

1e-06
110 120 130 140 150 160

Four-lepton invariant mass (GeV)

Like the NFL scores example above.
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Simpler Approach: Quantile Bins

* A mini-version of ranking. Make guantile bins in ME(€)
and other variables (here four-lepton invariant mass)

Background Only: One Pseudoexperiment
0.01

0.001

0.0001

@
=
S
>
O
N'd
L
=

1e-05

1e-06
110 120 130 140 150 160

Four-lepton invariant mass (GeV)

Here we consider 150 BG events.
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Simpler Approach: Quantile Bins

* A mini-version of ranking. Make guantile bins in ME(€)
and other variables (here four-lepton invariant mass)

Background Only: One Pseudoexperiment
0.01

0.001

0.0001

@
=
S
>
O
N'd
L
=

1e-05

1e-06
110 120 130 140 150 160

Four-lepton invariant mass (GeV)

Quantile bins made with large MC set— not the data.
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Simpler Approach: Quantile Bins

* A mini-version of ranking. Make guantile bins in ME(€)
and other variables (here four-lepton invariant mass)

Background Only: One Pseudoexperiment
0.01

0.001

0.0001

@
=
S
>
O
N'd
L
=

1e-05

1e-06
110 120 130 140 150 160

Four-lepton invariant mass (GeV)

Relatively flat with some fluctuations.
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Simpler Approach: Quantile Bins

* A mini-version of ranking. Make guantile bins in ME(€)
and other variables (here four-lepton invariant mass)

Background Only: Average of 400 Pseudoexperiments
0.01

0.001

0.0001

o
=
©
>
o
X
L
=

1e-05

1e-06
110 120 130 140 150 160

Four-lepton invariant mass (GeV)

On average, BG is flat (that was our goal!)
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Simpler Approach: Quantile Bins

* A mini-version of ranking. Make guantile bins in ME(€)
and other variables (here four-lepton invariant mass)

Signal and Background: One Pseudoexperiment

0.01

0.001

0.0001

o)
=
©
=
O
e
LL
=

1e-05

1e-06
110 120 130 140 150 160 170

Four-lepton invariant mass (GeV)

Now we consider 150 events in total, but 60 are signal.
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Simpler Approach: Quantile Bins

* A mini-version of ranking. Make guantile bins in ME(€)
and other variables (here four-lepton invariant mass)

Signal and Background: One Pseudoexperiment

0.01

0.001

0.0001

o)
=
©
=
O
e
LL
=

1e-05

1e-06
110 120 130 140 150 160 170

Four-lepton invariant mass (GeV)

Normalization from data: signal also causes deficits.
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Simpler Approach: Quantile Bins

* A mini-version of ranking. Make guantile bins in ME(€)
and other variables (here four-lepton invariant mass)

Signal and Background: Average of 400 Pseudoexperiments
0.01

0.001

0.0001

o
=
©
>
O
X
L
=

1e-05

1e-06
110 120 130 140 150 160 170

Four-lepton invariant mass (GeV)

Signal + Background pseudoexperiments averaged.
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Analytic Flattening

* Of course we can also obtain flat distributions by
weighing contributions to (potentially multivariable
distributions by the inverse of the background PDF
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Conclusions

* Important to develop model independent ways to search for signal

* This can be done in a straightforward, sensitive way using the background
matrix element.

* Related techniques allow backgrounds to be flattened— giving an intuitive
and general understanding of the significance of possible signals.




