## **Exploring lepton flavor violation** at an $e^-e^-$ linear collider

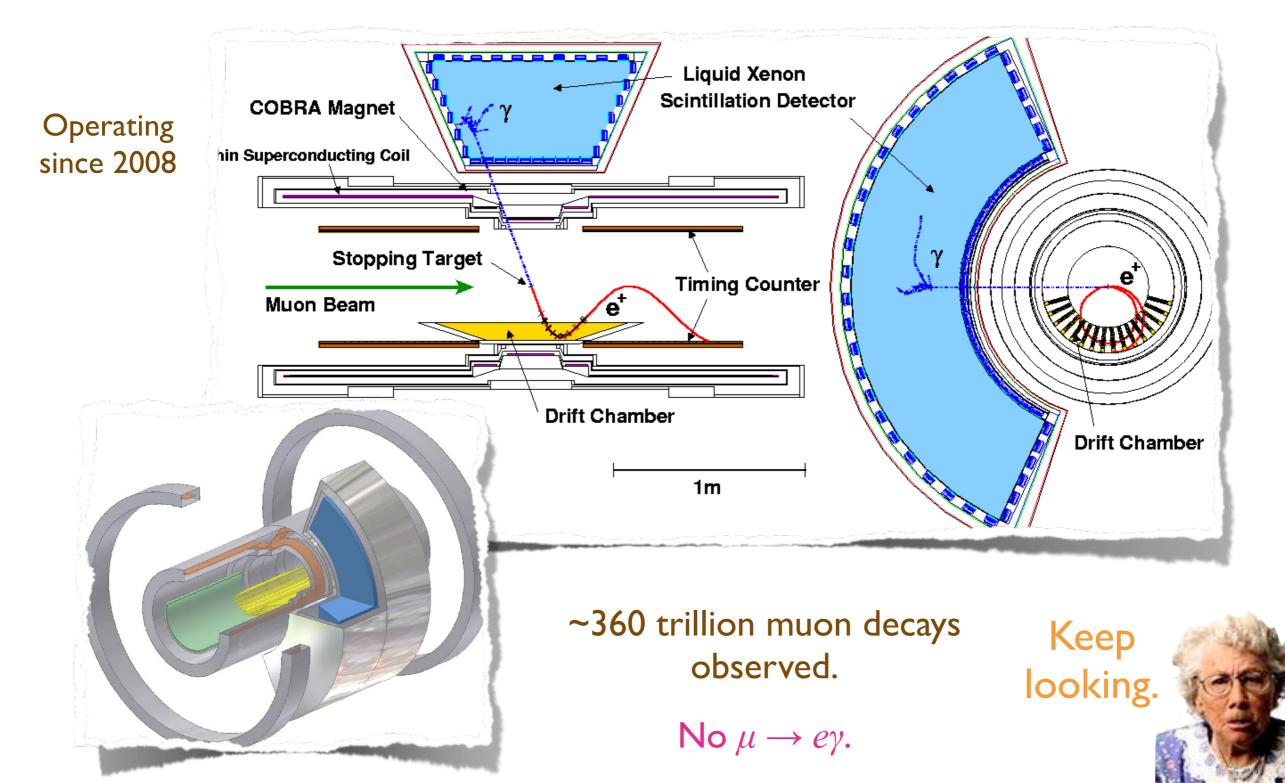
#### Brandon Murakami (Rhode Island College) work in progress with Tim Tait (University of California, Irvine) May 5, 2014

# Lepton Flavor Violation

• Charged LFV is forbidden by the SM\*.

e.g.,  $\mu^+ \not\rightarrow e^+ \gamma$  \*with massless neutrinos  $\tau^- \not\rightarrow \mu^+ \mu^- \mu^-$ 

Neutrinos always accompany lepton flavor changes.


e.g., 
$$\mu^- \to e^- \bar{\nu}_e \nu_\mu(\gamma)$$
 BR = 100% - 0.0034%  
 $\mu^- \to e^- \bar{\nu}_e \nu_\mu + e^+ e^-$  BR = 0.0034%

• If neutrino masses are included in the SM,

$$BR(\mu \to e\gamma) \sim \mathcal{O}\left(\frac{m_{\nu}^4}{m_W^4}\right).$$

Observable LFV = new physics!

### The MEG Experiment Paul Scherrer Institut, Switzerland



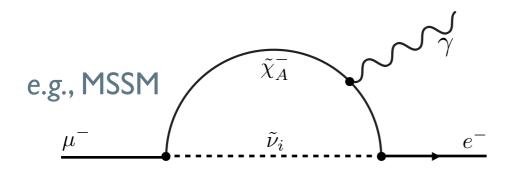


... from a talk by Toshinori Mori (2013)

### Low Energy Observables

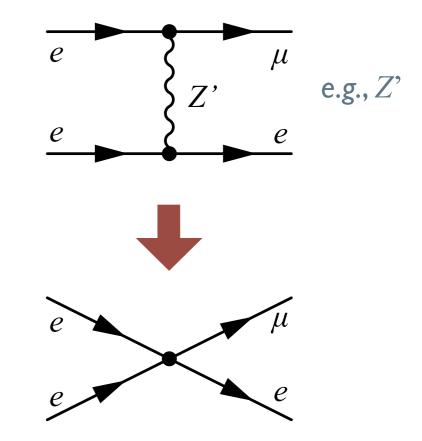
... as a guide to collider observables

| ObservableLimitFuture $\mu^+ \to e^+ \gamma$ $5.7 \times 10^{-13}$ $10^{-13}$ MEG [6] $\tau^+ \to e^+ \gamma$ $3.3 \times 10^{-8}$ $2.3 \times 10^{-9}$ SuperB [9] $\tau^+ \to \mu^+ \gamma$ $4.4 \times 10^{-8}$ $3 \times 10^{-9}$ Belle II [8], $1.8 \times 10^{-9}$ [9] $\mu \to eee$ $1.0 \times 10^{-12}$ $10^{-15}$ MUSIC [10], $10^{-16}$ Mu3e [11] $\tau \to eee$ $2.7 \times 10^{-8}$ $2 \times 10^{-10}$ [9] $\tau \to \mu\mu\mu$ $2.1 \times 10^{-8}$ $1 \times 10^{-9}$ [8], $2 \times 10^{-10}$ [9] $\mu^-$ SiC $\to e^-$ SiCnone $10^{-14}$ DeeMe $\mu^-$ Al $\to e^-$ Alnone $10^{-16}$ COMET [13], Mu2e [14] $\mu^-$ Ti $\to e^-$ Ti $4.3 \times 10^{-12}$ $10^{-18}$ PRISM/PRIME [15]                                                                                                                                                     |                                                       |                       |                                                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|-----------------------------------------------------------|--|
| $\begin{aligned} \tau^{+} \to e^{+}\gamma & 3.3 \times 10^{-8} \\ \tau^{+} \to \mu^{+}\gamma & 4.4 \times 10^{-8} \\ \mu \to eee & 1.0 \times 10^{-12} \\ \tau \to eee & 2.7 \times 10^{-8} \\ \tau \to \mu\mu\mu & 2.1 \times 10^{-8} \\ \mu^{-}\operatorname{SiC} \to e^{-}\operatorname{SiC} & \text{none} \\ \mu^{-}\operatorname{Al} \to e^{-}\operatorname{Al} & \text{none} \end{aligned} \begin{array}{l} 2.3 \times 10^{-9} \text{ SuperB [9]} \\ 3 \times 10^{-9} \text{ Belle II [8], } 1.8 \times 10^{-9} \text{ [9]} \\ 3 \times 10^{-9} \text{ Belle II [8], } 1.8 \times 10^{-9} \text{ [9]} \\ 10^{-15} \text{ MUSIC [10], } 10^{-16} \text{ Mu3e [11]} \\ 2 \times 10^{-10} \text{ [9]} \\ 1 \times 10^{-9} \text{ [8], } 2 \times 10^{-10} \text{ [9]} \\ 10^{-14} \text{ DeeMe} \\ 10^{-16} \text{ COMET [13], Mu2e [14]} \end{aligned}$ | Observable                                            | Limit                 | Future                                                    |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mu^+ \to e^+ \gamma$                                |                       |                                                           |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\tau^+ \to e^+ \gamma$                               | $3.3 \times 10^{-8}$  | $2.3 \times 10^{-9}$ SuperB [9]                           |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\tau^+ 	o \mu^+ \gamma$                              | $4.4 \times 10^{-8}$  | $3 \times 10^{-9}$ Belle II [8], $1.8 \times 10^{-9}$ [9] |  |
| $ \begin{array}{cccc} \tau \to \mu \mu \mu & 2.1 \times 10^{-8} & 1 \times 10^{-9} \ [8], \ 2 \times 10^{-10} \ [9] \\ \mu^{-} \operatorname{SiC} \to e^{-} \operatorname{SiC} & \text{none} & 10^{-14} \ \operatorname{DeeMe} \\ \mu^{-} \operatorname{Al} \to e^{-} \operatorname{Al} & \text{none} & 10^{-16} \ \operatorname{COMET} \ [13], \ \operatorname{Mu2e} \ [14] \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\mu \rightarrow eee$                                 |                       | $10^{-15}$ MUSIC [10], $10^{-16}$ Mu3e [11]               |  |
| $\mu^{-} \operatorname{SiC} \rightarrow e^{-} \operatorname{SiC}  \text{none} \qquad 10^{-14} \text{ DeeMe} \\ \mu^{-} \operatorname{Al} \rightarrow e^{-} \operatorname{Al}  \text{none} \qquad 10^{-16} \text{ COMET [13], Mu2e [14]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | au  ightarrow eee                                     | $2.7 \times 10^{-8}$  | $2 \times 10^{-10}$ [9]                                   |  |
| $\mu^{-} \operatorname{Al} \rightarrow e^{-} \operatorname{Al}$ none $10^{-16} \operatorname{COMET} [13], \operatorname{Mu2e} [14]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $	au 	o \mu \mu \mu$                                  | $2.1 \times 10^{-8}$  |                                                           |  |
| 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mu^- \operatorname{SiC} \to e^- \operatorname{SiC}$ | none                  | $10^{-14}$ DeeMe                                          |  |
| $\mu^{-} \text{Ti} \to e^{-} \text{Ti}$ $4.3 \times 10^{-12}$ $10^{-18} \text{ PRISM/PRIME} [15]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\mu^- \operatorname{Al} \to e^- \operatorname{Al}$   | none                  | $10^{-16}$ COMET [13], Mu2e [14]                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mu^- \operatorname{Ti} \to e^- \operatorname{Ti}$   | $4.3 \times 10^{-12}$ | $10^{-18}$ PRISM/PRIME [15]                               |  |


Strong but not that strong.  $ee \rightarrow \tau e$  is observable at the ILC.  $(ee \rightarrow \mu e$  is strongly constrained.)  $\frac{em_{\tau}}{2}\bar{\tau}\sigma_{\mu\nu}F^{\mu\nu}(A_LP_L+A_RP_R)e+\text{h.c.}$ 

 $\tau \rightarrow e\gamma \; (\mu\gamma)$  limits are too strict for ILC

 $\Rightarrow$  We turn to 4-fermion contact operators for ILC studies.


### Suppressing the Penguin

In large classes of popular models,



the photon penguin dominates LFV.

Consider: contact operators via tree-level LFV via bosons.



### Our EFT Model

#### Possible 4-fermion operators (10):

- (pseudo) scalar (4):  $e.g., [\bar{e}\bar{e}][\bar{\tau}\bar{e}], [\bar{e}\gamma^5\bar{e}][\bar{\tau}\bar{e}], \dots$
- (axial) vector (4):  $e.g., [\bar{e}\gamma^{\mu}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], [\bar{e}\gamma^{\mu}\gamma^{5}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], \dots$
- (anti-symmetric) tensor (2):  $[\bar{e}\sigma^{\mu\nu}e][\bar{\tau}\sigma_{\mu\nu}e], \epsilon^{\mu\nu\rho\sigma}[\bar{e}\sigma_{\mu\nu}e][\bar{\tau}\sigma_{\rho\sigma}e]$

Fierz constraints (6). (Not shown.)

Our lagrangian choice:

 $-\mathcal{L} \supset (v_{LL}[\bar{e}\gamma^{\mu}P_{L}e][\bar{\tau}\gamma_{\mu}P_{L}e] + v_{RR}[\bar{e}\gamma^{\mu}P_{R}e][\bar{\tau}\gamma_{\mu}P_{R}e]$  $+ v_{LR}[\bar{e}\gamma^{\mu}P_{L}e][\bar{\tau}\gamma_{\mu}P_{R}e] + v_{RL}[\bar{e}\gamma^{\mu}P_{R}e][\bar{\tau}\gamma_{\mu}P_{L}e]) + \text{h.c.}$ 

### Why an *e<sup>-</sup>e<sup>-</sup>* collider?

#### Complimentary observables:

(unpolarized spins)

$$\Gamma(\tau^- \to e^+ e^- e^-) = \frac{m_\tau^5}{1,536\pi^3} [2(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2)]$$

$$\sigma(e^+e^- \to e^+\tau^-) = \frac{s}{12\pi} [(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2) + (|v_{RL}|^2 + |v_{RL}|^2)$$

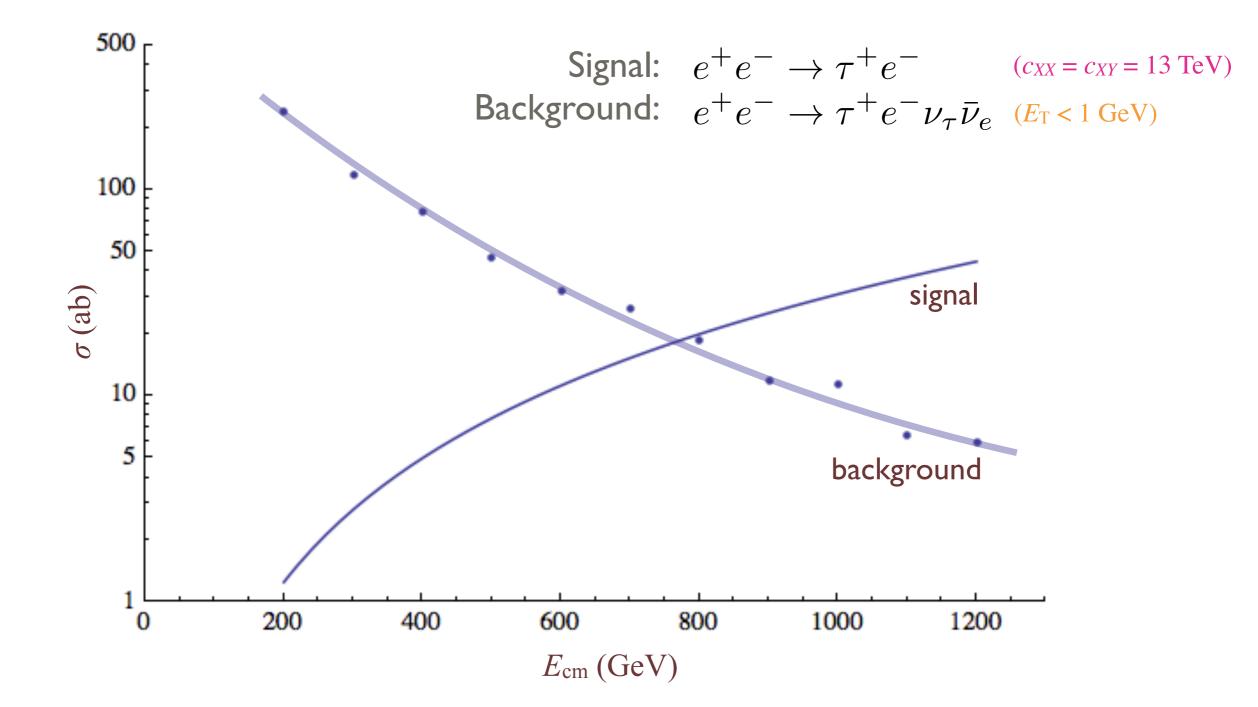

$$\sigma(e^{-}e^{-} \rightarrow e^{-}\tau^{-}) = \frac{s}{48\pi} [6(|v_{LL}|^{2} + |v_{RR}|^{2}) + (|v_{LR}|^{2} + |v_{RL}|^{2})]$$

$$c_{XY}^{-4} \equiv |v_{LR}|^{2} + |v_{RL}|^{2}$$

$$c_{XX}^{-4} \equiv |v_{LL}|^{2} + |v_{RR}|^{2}$$

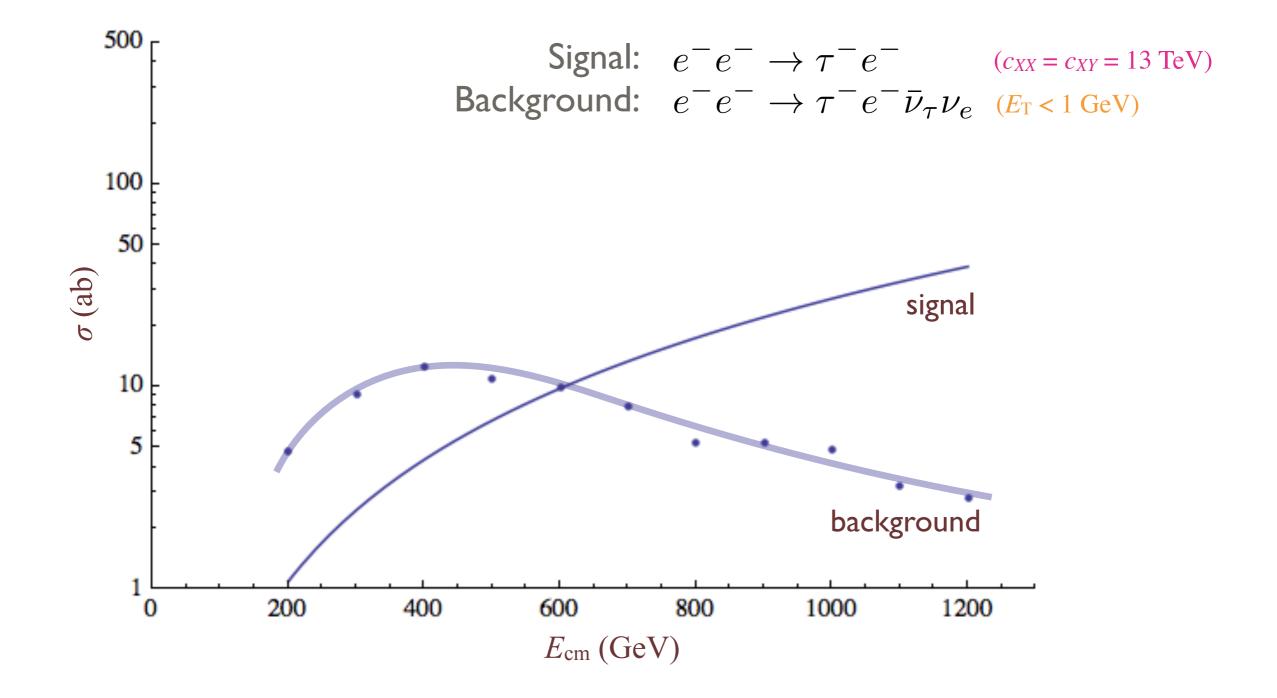
$$c_{XX}^{-4} \equiv |v_{LL}|^{2} + |v_{RR}|^{2}$$

$$c_{XX}^{-4} \equiv |v_{LL}|^{2} + |v_{RR}|^{2}$$




For O(1) couplings,  $\tau \rightarrow 3e$  has probed beyond 10 TeV physics.

What can a linear collider do?


### Signal and Background

...at an  $e^+e^-$  collider



### Signal and Background

...at an <u>e<sup>-</sup>e<sup>-</sup></u> collider



### Summary

- Observable charged LFV is unambiguously BSM physics.
- In an EFT with 4-fermion contact operators as the dominant LFV mechanism,

$$\tau \to 3e$$
$$e^+e^- \to \tau e$$
$$e^-e^- \to \tau^-e^-$$

are complementary observables.

- $e^+e^- \rightarrow \tau e$  is observable at the ILC.
- $e^-e^- \rightarrow \tau^-e^-$  is observable at an  $e^-e^-$  collider or ILC option.
- These observables probe over 10 TeV physics with  ${\it O}(1)$  couplings at a LC.