Exploring lepton flavor violation

at an e-e-linear collider

Brandon Murakami (Rhode Island College)
work in progress with Tim Tait (University of California, Irvine)
May 5, 2014

Lepton Flavor Violation

Charged

Lepton Flavor Violation

Charged LFV is forbidden by the SM*.

e.g.,
$$\mu^+ \not\rightarrow e^+ \gamma$$

$$\tau^- \not\rightarrow \mu^+ \mu^- \mu^-$$

*with massless neutrinos

Charged

Lepton Flavor Violation

Charged LFV is forbidden by the SM*.

e.g.,
$$\mu^+ \not\rightarrow e^+ \gamma$$

$$\tau^- \not\rightarrow \mu^+ \mu^- \mu^-$$

*with massless neutrinos

Neutrinos always accompany lepton flavor changes.

e.g.,
$$\mu^- \to e^- \bar{\nu}_e \nu_\mu (\gamma)$$
 BR = 100% - 0.0034% $\mu^- \to e^- \bar{\nu}_e \nu_\mu + e^+ e^-$ BR = 0.0034%

Charged

Lepton Flavor Violation

Charged LFV is forbidden by the SM*.

e.g.,
$$\mu^+ \not\rightarrow e^+ \gamma$$

$$\tau^- \not\rightarrow \mu^+ \mu^- \mu^-$$

*with massless neutrinos

Neutrinos always accompany lepton flavor changes.

e.g.,
$$\mu^- \to e^- \bar{\nu}_e \nu_\mu (\gamma)$$
 BR = 100% - 0.0034% $\mu^- \to e^- \bar{\nu}_e \nu_\mu + e^+ e^-$ BR = 0.0034%

• If neutrino masses are included in the SM,

$$BR(\mu \to e\gamma) \sim \mathcal{O}\left(\frac{m_{\nu}^4}{m_W^4}\right)$$
.

Observable LFV = new physics!

The MEG Experiment Paul Scherrer Institut, Switzerland

The MEG Experiment Paul Scherrer Institut, Switzerland

...from a talk by Toshinori Mori (2013)

...as a guide to collider observables

...as a guide to collider observables

Observable	Limit	Future
$\mu^+ \to e^+ \gamma$	5.7×10^{-13}	10^{-13} MEG [6]
$\tau^+ \to e^+ \gamma$	3.3×10^{-8}	$2.3 \times 10^{-9} \text{ SuperB [9]}$
$\tau^+ \to \mu^+ \gamma$	4.4×10^{-8}	3×10^{-9} Belle II [8], 1.8×10^{-9} [9]
$\mu \to eee$	1.0×10^{-12}	$10^{-15} \text{ MUSIC [10]}, 10^{-16} \text{ Mu3e [11]}$
au ightarrow eee	2.7×10^{-8}	$2 \times 10^{-10} [9]$
$ au ightarrow \mu \mu \mu$	2.1×10^{-8}	$1 \times 10^{-9} [8], 2 \times 10^{-10} [9]$
$\mu^- \operatorname{SiC} \to e^- \operatorname{SiC}$	none	10^{-14} DeeMe
$\mu^- \operatorname{Al} \to e^- \operatorname{Al}$	none	$10^{-16} \text{ COMET [13], Mu2e [14]}$
$\mu^- \operatorname{Ti} \to e^- \operatorname{Ti}$	4.3×10^{-12}	10^{-18} PRISM/PRIME [15]

...as a guide to collider observables

Observable	Limit	Future
$\mu^+ \to e^+ \gamma$	5.7×10^{-13}	10^{-13} MEG [6]
$\tau^+ \to e^+ \gamma$	3.3×10^{-8}	$2.3 \times 10^{-9} \text{ SuperB } [9]$
$ au^+ o \mu^+ \gamma$	4.4×10^{-8}	3×10^{-9} Belle II [8], 1.8×10^{-9} [9]
$\mu \to eee$	1.0×10^{-12}	$10^{-15} \text{ MUSIC [10]}, 10^{-16} \text{ Mu3e [11]}$
au ightarrow eee	2.7×10^{-8}	$2 \times 10^{-10} [9]$
$ au ightarrow \mu \mu \mu$	2.1×10^{-8}	$1 \times 10^{-9} [8], 2 \times 10^{-10} [9]$
$\mu^- \operatorname{SiC} \to e^- \operatorname{SiC}$	none	10^{-14} DeeMe
$\mu^- \operatorname{Al} \to e^- \operatorname{Al}$	none	$10^{-16} \text{ COMET [13], Mu2e [14]}$
$\mu^- \operatorname{Ti} \to e^- \operatorname{Ti}$	4.3×10^{-12}	10^{-18} PRISM/PRIME [15]

$$\frac{em_{\tau}}{2}\bar{\tau}\sigma_{\mu\nu}F^{\mu\nu}(A_LP_L + A_RP_R)e + \text{h.c.}$$

...as a guide to collider observables

Observable	Limit	Future
$\mu^+ \to e^+ \gamma$	5.7×10^{-13}	10^{-13} MEG [6]
$\tau^+ \to e^+ \gamma$	3.3×10^{-8}	$2.3 \times 10^{-9} \text{ SuperB [9]}$
$ au^+ o \mu^+ \gamma$	4.4×10^{-8}	3×10^{-9} Belle II [8], 1.8×10^{-9} [9]
$\mu \to eee$	1.0×10^{-12}	$10^{-15} \text{ MUSIC [10]}, 10^{-16} \text{ Mu3e [11]}$
au ightarrow eee	2.7×10^{-8}	$2 \times 10^{-10} [9]$
$ au ightarrow \mu \mu \mu$	2.1×10^{-8}	$1 \times 10^{-9} [8], 2 \times 10^{-10} [9]$
$\mu^- \operatorname{SiC} \to e^- \operatorname{SiC}$	none	10^{-14} DeeMe
$\mu^- \operatorname{Al} \to e^- \operatorname{Al}$	none	$10^{-16} \text{ COMET [13], Mu2e [14]}$
$\mu^- \operatorname{Ti} \to e^- \operatorname{Ti}$	4.3×10^{-12}	10^{-18} PRISM/PRIME [15]

$$\frac{em_{\tau}}{2}\bar{\tau}\sigma_{\mu\nu}F^{\mu\nu}(A_LP_L + A_RP_R)e + \text{h.c.}$$

 $\tau \rightarrow e\gamma (\mu\gamma)$ limits are too strict for ILC

⇒ We turn to 4-fermion contact operators for ILC studies.

...as a guide to collider observables

Observable	Limit	Future
$\mu^+ \to e^+ \gamma$	5.7×10^{-13}	10^{-13} MEG [6]
$ au^+ o e^+ \gamma$	3.3×10^{-8}	$2.3 \times 10^{-9} \text{ SuperB [9]}$
$ au^+ o \mu^+ \gamma$	4.4×10^{-8}	3×10^{-9} Belle II [8], 1.8×10^{-9} [9]
$\mu \to eee$	1.0×10^{-12}	$10^{-15} \text{ MUSIC [10]}, 10^{-16} \text{ Mu3e [11]}$
au ightarrow eee	2.7×10^{-8}	$2 \times 10^{-10} [9]$
$ au ightarrow \mu \mu \mu$	2.1×10^{-8}	$1 \times 10^{-9} [8], 2 \times 10^{-10} [9]$
$\mu^- \operatorname{SiC} \to e^- \operatorname{SiC}$	none	10^{-14} DeeMe
$\mu^- \operatorname{Al} \to e^- \operatorname{Al}$	none	$10^{-16} \text{ COMET [13], Mu2e [14]}$
$\mu^- \operatorname{Ti} \to e^- \operatorname{Ti}$	4.3×10^{-12}	$10^{-18} \text{ PRISM/PRIME [15]}$

Strong but not that strong.

 $ee \rightarrow \tau e$ is observable at the ILC.

($ee \rightarrow \mu e$ is strongly constrained.)

$$\frac{em_{\tau}}{2}\bar{\tau}\sigma_{\mu\nu}F^{\mu\nu}(A_LP_L + A_RP_R)e + \text{h.c.}$$

 $\tau \rightarrow e\gamma (\mu\gamma)$ limits are too strict for ILC

⇒ We turn to 4-fermion contact operators for ILC studies.

Suppressing the Penguin

In large classes of popular models,

the photon penguin dominates LFV.

Suppressing the Penguin

In large classes of popular models,

the photon penguin dominates LFV.

Consider: contact operators via tree-level LFV via bosons.

Possible 4-fermion operators (10):

- (pseudo) scalar (4): $e.g., [\bar{e}\bar{e}][\bar{\tau}\bar{e}], [\bar{e}\gamma^5\bar{e}][\bar{\tau}\bar{e}], \dots$
- (axial) vector (4): $e.g., [\bar{e}\gamma^{\mu}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], [\bar{e}\gamma^{\mu}\gamma^{5}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], \dots$
- (anti-symmetric) tensor (2): $[\bar{e}\sigma^{\mu\nu}e][\bar{\tau}\sigma_{\mu\nu}e], \epsilon^{\mu\nu\rho\sigma}[\bar{e}\sigma_{\mu\nu}e][\bar{\tau}\sigma_{\rho\sigma}e]$

Possible 4-fermion operators (10):

- (pseudo) scalar (4): $e.g., [\bar{e}\bar{e}][\bar{\tau}\bar{e}], [\bar{e}\gamma^5\bar{e}][\bar{\tau}\bar{e}], \dots$
- (axial) vector (4): $e.g., [\bar{e}\gamma^{\mu}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], [\bar{e}\gamma^{\mu}\gamma^{5}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], \dots$
- (anti-symmetric) tensor (2): $[\bar{e}\sigma^{\mu\nu}e][\bar{\tau}\sigma_{\mu\nu}e], \epsilon^{\mu\nu\rho\sigma}[\bar{e}\sigma_{\mu\nu}e][\bar{\tau}\sigma_{\rho\sigma}e]$

Fierz constraints (6). (Not shown.)

Possible 4-fermion operators (10):

- (pseudo) scalar (4): $e.g., [\bar{e}\bar{e}][\bar{\tau}\bar{e}], [\bar{e}\gamma^5\bar{e}][\bar{\tau}\bar{e}], \dots$
- (axial) vector (4): $e.g., [\bar{e}\gamma^{\mu}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], [\bar{e}\gamma^{\mu}\gamma^{5}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], \dots$
- (anti-symmetric) tensor (2): $[\bar{e}\sigma^{\mu\nu}e][\bar{\tau}\sigma_{\mu\nu}e], \epsilon^{\mu\nu\rho\sigma}[\bar{e}\sigma_{\mu\nu}e][\bar{\tau}\sigma_{\rho\sigma}e]$

Fierz constraints (6). (Not shown.)

Our lagrangian choice:

$$-\mathcal{L} \supset (v_{LL}[\bar{e}\gamma^{\mu}P_{L}e][\bar{\tau}\gamma_{\mu}P_{L}e] + v_{RR}[\bar{e}\gamma^{\mu}P_{R}e][\bar{\tau}\gamma_{\mu}P_{R}e]$$
$$+v_{LR}[\bar{e}\gamma^{\mu}P_{L}e][\bar{\tau}\gamma_{\mu}P_{R}e] + v_{RL}[\bar{e}\gamma^{\mu}P_{R}e][\bar{\tau}\gamma_{\mu}P_{L}e]) + \text{h.c.}$$

Possible 4-fermion operators (10):

- (pseudo) scalar (4): $e.g., [\bar{e}\bar{e}][\bar{\tau}\bar{e}], [\bar{e}\gamma^5\bar{e}][\bar{\tau}\bar{e}], \dots$
- (axial) vector (4): $e.g., [\bar{e}\gamma^{\mu}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], [\bar{e}\gamma^{\mu}\gamma^{5}\bar{e}][\bar{\tau}\gamma_{\mu}\bar{e}], \dots$
- (anti-symmetric) tensor (2): $[\bar{e}\sigma^{\mu\nu}e][\bar{\tau}\sigma_{\mu\nu}e], \epsilon^{\mu\nu\rho\sigma}[\bar{e}\sigma_{\mu\nu}e][\bar{\tau}\sigma_{\rho\sigma}e]$

Fierz constraints (6). (Not shown.)

Our lagrangian choice:

$$-\mathcal{L} \supset (v_{LL}[\bar{e}\gamma^{\mu}P_{L}e][\bar{\tau}\gamma_{\mu}P_{L}e] + v_{RR}[\bar{e}\gamma^{\mu}P_{R}e][\bar{\tau}\gamma_{\mu}P_{R}e]$$
$$+v_{LR}[\bar{e}\gamma^{\mu}P_{L}e][\bar{\tau}\gamma_{\mu}P_{R}e] + v_{RL}[\bar{e}\gamma^{\mu}P_{R}e][\bar{\tau}\gamma_{\mu}P_{L}e]) + \text{h.c.}$$

Complimentary observables:

(unpolarized spins)

$$\Gamma(\tau^- \to e^+ e^- e^-) = \frac{m_\tau^5}{1.536\pi^3} [2(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2)]$$

$$\sigma(e^+e^- \to e^+\tau^-) = \frac{s}{12\pi} [(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2) + (|v_{LR}|^2 + |v_{RL}|^2)]$$

$$\hookrightarrow \text{Studied by Ferriera, Guedes, Santos (2007)}$$

$$\sigma(e^{-}e^{-}) \to e^{-}\tau^{-}) = \frac{s}{48\pi} [6(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2)]$$

Complimentary observables:

(unpolarized spins)

$$\Gamma(\tau^- \to e^+ e^- e^-) = \frac{m_\tau^5}{1,536\pi^3} \left[2(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2) \right]$$

$$\sigma(e^+e^- \to e^+\tau^-) = \frac{s}{12\pi} [(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2) + (|v_{LR}|^2 + |v_{RL}|^2)]$$

$$\hookrightarrow \text{Studied by Ferriera, Guedes, Santos (2007)}$$

$$\sigma(e^-e^-) \to e^-\tau^-) = \frac{s}{48\pi} \left[6(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2) \right]$$

Complimentary observables:

(unpolarized spins)

$$\Gamma(\tau^- \to e^+ e^- e^-) = \frac{m_\tau^5}{1,536\pi^3} \left[2(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2) \right]$$

$$\sigma(e^+e^- \to e^+\tau^-) = \frac{s}{12\pi} [(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2)$$

→ Studied by Ferriera, Guedes, Santos (2007)

$$\sigma(e^{-}e^{-}) \to e^{-}\tau^{-}) = \frac{s}{48\pi} \left[6(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2) \right]$$

$$c_{XY}^{-4} \equiv |v_{LR}|^2 + |v_{RL}|^2$$

Complimentary observables:

(unpolarized spins)

$$\Gamma(\tau^- \to e^+ e^- e^-) = \frac{m_\tau^5}{1,536\pi^3} [2(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2)]$$

$$\sigma(e^+e^- \to e^+\tau^-) = \frac{s}{12\pi} [(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2)$$

→ Studied by Ferriera, Guedes, Santos (2007)

$$\sigma(e^-e^-) \to e^-\tau^-) = \frac{s}{48\pi} \left[6(|v_{LL}|^2 + |v_{RR}|^2) + (|v_{LR}|^2 + |v_{RL}|^2) \right]$$

Coupling Limits

For O(1) couplings, $\tau \to 3e$ has probed beyond 10 TeV physics.

What can a linear collider do?

Signal and Background

...at an e^+e^- collider

Signal and Background

...at an e-e- collider

Summary

- Observable charged LFV is unambiguously BSM physics.
- In an EFT with 4-fermion contact operators as the dominant LFV mechanism,

$$\tau \rightarrow 3e$$
 $e^{+}e^{-} \rightarrow \tau e$
 $e^{-}e^{-} \rightarrow \tau^{-}e^{-}$

are complementary observables.

- $e^+e^- \rightarrow \tau e$ is observable at the ILC.
- $e^-e^- \rightarrow \tau^-e^-$ is observable at an e^-e^- collider or ILC option.
- These observables probe over 10 TeV physics with O(1) couplings at a LC.