Lepton Number Violation with Jets: A Match Made at the Seesaw Scale¹ Pheno 14

Richard Ruiz

Pitt-PACC, University of Pittsburgh

May 5, 2014

¹w. T. Han (Pitt) and D. Alva (UFABC) [In Progress] \Rightarrow (\Rightarrow) (

The Standard Model of Particle Physics

These are the ingredients of the Standard Model (SM) of Particle Physics (BEH '64, GWS 60s, 't Hooft-Veltman '72, etc.)

After electroweak (EW) symmetry breaking (EWSB), anything that touches (interacts with) the Higgs (field) gets a mass.

$$\blacktriangleright \text{ No } y_{\nu} \Longrightarrow \text{ No } m_{\nu}.$$

・ロト・国ト・モート ヨー うらぐ

Disclaimer: Neutrinos have mass.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

Massive Neutrinos is a Complicated Issue

Massive neutrinos worsen the mass hierarchy of fermions

•
$$\frac{m_e}{m_t} \sim \frac{10^5 \text{eV}}{10^{11} \text{eV}} = 10^{-6}$$
, but $\frac{m_{\nu}}{m_t} \lesssim \frac{10^{-1} \text{eV}}{10^{11} \text{eV}} = 10^{-12}$

- The Universe is better off with massless neutrinos
 - Chiral symmetry in the neutrino sector is restored
- The Universe is better off with massive neutrinos
 - CP violation in lepton sector
 - With very heavy Majorana masses, we also get Leptogenesis
- ► Unless B L is promoted to a full symmetry, neutrino mass-generating mechanisms necessarily result in Lepton number violation at dimension-5 (Weinberg 1979)

• $\mathcal{L} \in \frac{1}{\Lambda} \overline{L} \tilde{\Phi} \tilde{\Phi}^{\dagger} L$

Motivation: Studying neutrino masses, the (spontaneous) generation of their masses, and their pheno is an investigation into new physics because neutrino masses is BSM physics.

Outline

Lepton Number Violation with Jets [PRELIMINARY]

- Motivation for investigating neutrino masses \checkmark
- The Seesaw Mechanism in a Nutshell
- Testing Seesaw Mechanisms with $pp \rightarrow N\ell^{\pm}$ at the LHC
- Testing Seesaw Mechanisms with $pp \rightarrow N\ell^{\pm} + nj$ at the LHC
 - Breaking things down
 - Results [PRELIMINARY]
- Summary

The Seesaw Mechanism² in a Nutshell

The seesaw mechanism is a device for simultaneously generating neutrino masses and explaining the smallness of their values compared to the EW scale.

²Yanagita (1979); Gell-Mann, Ramond, Slansky (1979); S.L. Glashow (1980); Mohapatra, Senjanovic (1980) + Type II + Type III + Inverse + Radiative + many others

The Seesaw Mechanism³ in a Nutshell

Massive, left-handed neutrinos exist. Suppose y_{ν} exist and that L is not a good symmetry at low energies. Below the EW scale we get

 $\mathcal{L} \ni -m_D \overline{\nu_R} \nu_L + h.c.$

Suppose also some spin-1/2 fermion with zero charge under any exact symmetry below EW scale (singlet!). We are allowed to write

 $-m_M \overline{S^c}S$

However, below the EW scale, ν and S have the same spacetime (LN?) and good, internal q numbers, so they mix. The mass eigenvalues are

$$m_1 \approx m_D \frac{m_D}{m_M}, \quad m_2 \approx m_M \qquad (m_D \ll m_M)$$

For $m_D \sim 100$ GeV and $\nu_1 \sim 0.1$ eV, $M_N \sim 10^{14}$ GeV ³Yanagita (1979); Gell-Mann, Ramond, Slansky (1979); S.L. Glashow (1980); Mohapatra, Senjanovic (1980)

Many Ways to Generate EW Scale m_D and TeV Scale m_M

 $Type(I)^4$: Add a spin-1/2 singlet with a Majorana mass term:

$$\blacktriangleright \mathcal{L} \ni m_M \overline{S^c} S \implies m_{\nu}^{ij} \propto m_D^i m_D^j / m_M$$

• N_R can be the singlet

Type(II)⁵: Add Higgs $SU(2)_L$ triplet $(H^{0,\pm,\pm\pm})$ but no N_R

 $\blacktriangleright \mathcal{L} \ni y \overline{L^{c}} (i\sigma_2) \Delta L \implies m_M \overline{\nu^{c}} \nu$

Type(III)⁶: Introduce fermion $SU(2)_L$ triplet $(T^{0,\pm})$

•
$$m_{
u}^{ij} \propto m_D^i m_D^j / M_T$$

Inverse and Radiative⁷: Facilitate low-energy Seesaw Mechanisms

Lepton number violation (LNV) is present in all these mechanisms.

Punchline: There are many different ways to generate $m_{D/M}$, and each results in rich collider phenomenology.

⁴Minkowski ('77); Gell-Mann, Ramond, Slansky ('79); etc...

⁵Mohapatra,Senjanovic (80,81); Magg,Wetterich (80); Lazarides,Shafi (81) ⁶Foot, Lew, He, Joshi (1989); G. Senjanovic et al. ...

⁷Mohapatra (1986); Mohapatra, Valle (1986). Zee (1985), Babu (1988) 💿 👁

Testing Seesaw Mechanisms with $pp \rightarrow N\ell^{\pm}$ at the LHC Seesaw Mechanisms with N are tested with cool *L*-Violating processes:

- First proposed by Keung & Senjanovic (1983) in the context of W_R and N_R
- Many, many good papers since then and lots left to study
 - e.g., See talks by De La Puente, Das, Lewis, MC Chen
- ▶ Expt limits on *m_N* are tough... as is building new colliders
 - ▶ We must be more clever to test higher seesaw scales at 14 TeV

Testing Seesaw Mechs. with $pp \rightarrow N\ell^{\pm} + nj$ at the LHC

An interesting study by Bhupal Dev, Pilaftsis, and Yang (BPY) appeared in August⁸ considering a new heavy N production mechanism via the $U(1)_{\rm EM}$ corrections to the DY process:

The inclusive $pp \rightarrow N \ell^+ j$

Two types of diagrams:

- Compton scattering
- Vector Boson Scattering (VBS)

Includes contributions from

- Exclusive $pp \rightarrow N \ell^+ jj$
- Semi-elastic $p\gamma \to N \ \ell^+ \ j(p)$

BPY_Claim: $\sigma(2j) > \sigma_{DY}$ for $m_N \gtrsim 200$ GeV ⁸arXiv:1308.2209, PRL112, 081801 (2014)

 $pp
ightarrow N\ell^{\pm} + nj$ at the LHC

Inclusive $pp \rightarrow N \ell^+ j$ is very interesting because

(i) LHC detectors were designed with forward jet tagging capabilities for vector boson scattering

(ii) Includes a diffractive process, which can be sizable at the LHC

- $p \rightarrow p\gamma$ means collinear, initial-state γ and proton escapes detector undetected
- Elastic, Semi-Elastic, and Inelastic γγ → X processes have been extensively studied, e.g.,⁹ γγ → ℓ̃⁺ℓ̃⁻, H⁺H⁻, H⁺⁺H⁻⁻

(iii) Despite $\mathcal{O}(\alpha_{\rm EM}^2)$ suppression over DY, IR, collinear (log), and (longitudinal) polarizations enhancements are present.

(iv) Existence of new dominant mechanism is a big deal.

pp Scattering with Collinear Photons

For small photon virtualities $\left(\sqrt{q^2} < \Lambda_{\text{Cutoff}} \sim \mathcal{O}(m_p)\right)$ and small $p \rightarrow p\gamma$ emission angles, diffractive processes are factorizable

$$d\sigma(pp \to N\ell^+ j + Y) = \int d\xi_1 d\xi_2 \quad \sum_q [f_{q/p}(\xi_1) f_{\gamma/p}(\xi_2) + (1 \leftrightarrow 2)] \times d\hat{\sigma}(q\gamma \to N\ell^+ j),$$

Modified Williams-Weizsäcker Equivalent Photon Approximation (EPA) Several good descriptions exist, e.g. Budnev, et. al. (1975) [MG5, CalcHEP], Drees-Zeppenfeld (1989)

医周下 医医下下医下

Exclusive $pp \rightarrow N\ell^{\pm}jj$

For large photon virtualities $(\sqrt{q^2} > O(m_p))$ and careful cuts, the 2*j* process is perfectly perturbative and can be modeled with MG5, CalcHEP, etc.

+ other diagrams (Z and internal ν_{ℓ})

< ロ > < 同 > < 回 > < 回 >

pp Scattering with Collinear Photons (Part II)

New contribution: For intermediate photon virtualities $\left(\mathcal{O}(m_p) < \sqrt{q^2} \sim E_\gamma\right)$ and small $q \rightarrow q\gamma$ emission angles, diffractive processes still are factorizable

$$d\sigma(pp \to N\ell^+ j + Y) = \int d\xi_1 d\xi_2 dz$$

$$\sum_{q,q'} \left[f_{q/p}(\xi_1) f_{q'/p}(\xi_2) f_{\gamma/q'}(z) e_{q'}^2 + (1 \leftrightarrow 2) \right] d\hat{\sigma}(q\gamma), \quad \hat{s} = \xi_1 \xi_2 zs$$

The Williams-Weizsäcker Approximation enjoys both the same parton luminosity as the 2*j* process and log enhancements of semi-elastic processes.

Results (Preliminary!)

- ► Inelastic Nℓ+1j rate is larger than both semi-elastic Nℓ+1j and Nℓ+2j
- However, even with new contribution, we do not observe a rate larger than the DY rate

Summary

- A new mechanism for generating heavy neutrinos at the LHC has been proposed
 - Consists of radiative EW corrections to DY
 - Claim: $\sigma(2j) > \sigma_{DY}$ for $m_N \gtrsim 200$ GeV
- We have considered a previously unconsidered contribution (inelastic *p*γ scattering) and find that it is dominant over other contributions (semi-elastic *p*γ, 2*j*)
- ▶ We have verified that the inclusive $pp \rightarrow N\ell^+ j$ rate is much larger than naive expectations
 - However, we do not observe a rate that is larger than the DY rate

"Hadron colliders may serve as the discovery machine for the mysterious 'sterile Majorana neutrinos"¹⁰

"Observing neutrinos at the LHC"... I think that is really cool.

Thank you.

Backup 1/1 (Preliminary!)

Minimalistic VBS Cuts added to remove prompt $W/Z/\gamma$ + GI contributions, and quantify contribution from VBS diagrams.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで