

The Magnetic Radius of the Proton

Gil Paz

Department of Physics and Astronomy, Wayne State University

[Zachary Epstein GP, Joydeep Roy, to appear]

Outline

- The proton electric radius problem
- The proton magnetic radius problem
- Model independent extraction of the proton magnetic radius from electron scattering
- Conclusions and outlook

The proton electric radius problem

[Richard J. Hill, GP PRD 82 113005 (2010)]

Form Factors

• Matrix element of EM current between nucleon states give rise to two form factors $(q = p_f - p_i)$

$$\langle N(p_f)|\sum_{q} e_q \,\bar{q}\gamma^{\mu}q|N(p_i)\rangle = \bar{u}(p_f) \left[\gamma^{\mu}F_1(q^2) + \frac{i\sigma_{\mu\nu}}{2m}F_2(q^2)q^{\nu}\right]u(p_i)$$

Sachs electric and magnetic form factors

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4m_p^2}F_2(q^2) \qquad G_M(q^2) = F_1(q^2) + F_2(q^2)$$
$$G_E^p(0) = 1 \qquad \qquad G_M^p(0) = \mu_p \approx 2.793$$

• The slope of G_E^p

$$\langle r^2 \rangle_E^p = 6 \frac{dG_E^p}{dq^2} \bigg|_{q^2 = 0}$$

determines the charge radius $r_E^p \equiv \sqrt{\langle r^2 \rangle_E^p}$

• Lamb shift in muonic hydrogen [Pohl et al. Nature 466, 213 (2010)] $r_E^p = 0.84184(67)$ fm

more recently $r_E^p = 0.84087(39)$ fm [Antognini et al. Science 339, 417 (2013)]

• CODATA value [Mohr et al. RMP 80, 633 (2008)] $r_E^p = 0.87680(690)$ fm

more recently $r_E^p = 0.87750(510)$ fm [Mohr et al. RMP 84, 1527 (2012)] extracted mainly from (electronic) hydrogen

• (more than) 5σ discrepancy!

How to resolve the puzzle?

• Almost 4 years after first measurement puzzle is still not resolved

(Cover story of February 2014 Scientific American)

- Is it new physics?
- Is it a problem with the theoretical prediction?
 [Richard. J. Hill, GP PRL 107 160402 (2011), and in progress]

Proton radii from scattering data

- Apart from regular and muonic hydrogen, the proton radius can be extracted from electron-proton scattering
- Problem: we don't know the functional form of form factors
- Solution: use analytic properties for a model-independent extraction z-expansion: [Hill, GP PRD 82 113005 (2010)] $r_E^p = 0.87100(940)$ fm
- More consistent with
- Regular hydrogen $r_E^p = 0.87680(690)$ fm ($r_E^p = 0.87750(510)$ fm) Than
- Muonic hydrogen $r_E^p = 0.84184(67)$ fm ($r_E^p = 0.84087(39)$ fm)

z expansion

- $G_E^p(t)$ is analytic outside a cut $q^2 = t \in [4m_\pi^2, \infty]$ e - p scattering data is in t < 0 region
- We can map the domain of analyticity onto the unit circle

$$z(t,t_{ ext{cut}},t_0) = rac{\sqrt{t_{ ext{cut}}-t}-\sqrt{t_{ ext{cut}}-t_0}}{\sqrt{t_{ ext{cut}}-t}+\sqrt{t_{ ext{cut}}-t_0}}$$

where $t_{\mathrm{cut}}=4m_\pi^2$, $z(t_0,t_{\mathrm{cut}},t_0)=0$

• Expand G_E^p in a Taylor series in z: $G_E^p(q^2) = \sum_{k=0} a_k z(q^2)^k$ Need to bound a_k for r_E^p independent of k: Use $|a_k| \le 5$ and $|a_k| \le 10$

Proton Electric Radius Results

• Proton data: $Q^2 < 0.5 \, {
m GeV}^2$

$$r_{E}^{p}=0.870\pm0.023\pm0.012$$
 fm

• Proton and neutron data

$$r_E^p = 0.880^{+0.017}_{-0.020} \pm 0.007$$
 fm

 $\bullet\,$ Proton, neutron and $\pi\,\pi\,\,{\rm data}$

$$r_E^p = 0.871 \pm 0.009 \pm 0.002 \pm 0.002$$
 fm

The proton magnetic radius problem

The proton magnetic radius problem

• The proton *magnetic* radius

$$\langle r^2 \rangle_M^p = \frac{6}{G_M^p(0)} \frac{dG_M^p(q^2)}{dq^2} \bigg|_{q^2=0}$$

- PDG 2012:
- Recent high precision data from A1 experiment at Mainz $r_M^p = 0.777 \pm 0.017$ fm [Bernauer et al. PRL **105**, 242001 (2010)] Older data sets
- $r_M^{\rho} = 0.876 \pm 0.019$ fm [Borisyuk et al. 2010]
- $r_M^p = 0.854 \pm 0.005$ fm [Belushkin et al. 2007] Are we facing a magnetic radius puzzle too?
- We need a model independent extraction of r_M^p !

Model independent extraction of the proton magnetic radius from electron scattering

[Zachary Epstein GP, Joydeep Roy, to appear]

Bound on $|a_k|$

- Analyzing p and n data separate G_M^p and G_M^n to isospin channels $G_M^{(0)} = G_M^p + G_M^n$ $G_M^{(0)}(0) = \mu_p + \mu_n \approx 0.88$ $\Rightarrow I = 0, \quad a_0 = 0.88$ $G_M^{(1)}(0) = \mu_p - \mu_n \approx 4.7$ $\Rightarrow I = 1, \quad a_0 = 4.7$
- Vector dominance ansatz:

-
$$I=0$$
 (ω exchange) $|a_k|\leq 1.1$

-
$$I = 1$$
 (ho exchange) $|a_k| \leq 5.1$

- Between $t = 4m_{\pi}^2$ and $t = 16m_{\pi}^2$ only $\pi\pi$ contributes l = 1: $|a_k| \le 7.2$
- Above $t = 4m_N^2$ use $e^+e^- \rightarrow N\bar{N}$: negligible contribution to a_k
- Conclusion: $|a_k| \le 5$ not conservative enough, use $|a_k| \le 10$ and $|a_k| \le 15$

r_M^p from proton data (*Preliminary*)

- *G^p_M(q²)* values from *e p* scattering data [Arrington et al. PRC **76**, 035205 (2007)]
- Extracted values don't depend on number of parameters (results shown for for $k_{max} = 8$)
- $Q^2 \leq 0.5 \; \mathrm{GeV^2}$
- $|a_k| \leq 10$: $r_{\mathcal{M}}^p = 0.91^{+0.03}_{-0.06}$ fm
- $|a_k| \le 15$: $r_M^p = 0.92^{+0.04}_{-0.07}$ fm

• $Q^2 \leq 1.0 \; {
m GeV}$

- $|a_k| \leq 10$: $r_{\mathcal{M}}^{\mathcal{P}} = 0.90^{+0.03}_{-0.07}$ fm
- $|a_k| \le 15$: $r_M^p = 0.91^{+0.04}_{-0.07}$ fm

r_M^p from proton and neutron data (*Preliminary*)

- G^p_M(q²) from [Arrington et al. PRC 76, 035205 (2007)]
 Gⁿ_M(q²) from [Lachniet et al. PRL 102 192001 (2009); Anderson et al. PRC75, 034003 (2007); Kubon et al. PLB 524, 26 (2002); Xu et al. PRL 85, 2900 (2000); Anklin et al. PLB 428, 248 (1998); Anklin et al. PLB 336, 313 (1994); Gao et al. PRC 50, 546 (1994); Lung et al. PRL 70, 718 (1993)]
- Fit both $G_M^{(0)}$ and $G_M^{(1)}$
- $Q^2 \leq 0.5 \; {
 m GeV^2}$
- $|a_k| \le 10$: $r_M^p = 0.87^{+0.04}_{-0.05}$ fm
- $|a_k| \le 15$: $r_M^p = 0.87^{+0.05}_{-0.05}$ fm
- $Q^2 \leq 1.0 \; {
 m GeV}$
- $|a_k| \le 10$: $r_M^p = 0.88^{+0.02}_{-0.05}$ fm
- $|a_k| \le 15$: $r_M^p = 0.88^{+0.04}_{-0.05}$ fm

r^{p}_{M} from proton and neutron and $\pi\pi$ data (*Preliminary*)

- $G^{p}_{M}(q^{2})$ from [Arrington et al. PRC **76**, 035205 (2007)]
- Gⁿ_M(q²) from [Lachniet et al. PRL 102 192001 (2009); Anderson et al. PRC75, 034003 (2007); Kubon et al. PLB 524, 26 (2002); Xu et al. PRL 85, 2900 (2000); Anklin et al. PLB 428, 248 (1998); Anklin et al. PLB 336, 313 (1994); Gao et al. PRC 50, 546 (1994); Lung et al. PRL 70, 718 (1993)]
- Im $G_M^{(1)}$ between $t = 4m_\pi^2$ and $t = 16m_\pi^2$ from $\pi\pi$ data [Höhler, Landolt-Börnstein database Vol. 9b1 (1983); Amendolia et al. PLB **138**, 454 (1984); Achasov et al. JETP **101**, 1053 (2005)]
- $Q^2 \le 0.5 \text{ GeV}^2$ - $|a_k| \le 10$: $r_M^p = 0.87^{+0.01}_{-0.02} \text{ fm}$
- $-|a_k| \le 10: r_M^p = 0.07_{-0.02} \text{ fm}$ $-|a_k| \le 15: r_M^p = 0.87_{-0.02}^{+0.01} \text{ fm}$
- $Q^2 \leq 1.0 \; {
 m GeV}$
- $|a_k| \le 10$: $r_M^p = 0.87^{+0.01}_{-0.01}$ fm
- $|a_k| \le 15$: $r_M^p = 0.88^{+0.01}_{-0.02}$ fm

Conclusions and outlook

Conclusions

- Proton electric radius problem not resolved yet
- Are we facing a magnetic radius puzzle too?
- Model independent extraction of magnetic radius *Preliminary* results:
- Proton data

$$r^p_M = 0.91^{+0.03}_{-0.06} \pm 0.02~{
m fm}$$

- Proton and neutron data

$$r^p_M = 0.87^{+0.04}_{-0.05} \pm 0.01~{
m fm}$$

- Proton, neutron and $\pi\,\pi$ data

$$r_M^p = 0.87^{+0.01}_{-0.02} \text{ fm}$$

• Consistent results, independent of k_{max} and cut on Q^2

Outlook

- Model independent extraction of magnetic radius *Preliminary* results:
- Proton data : $r_M^p = 0.91^{+0.03}_{-0.06} \pm 0.02$ fm
- Proton and neutron data: $r_M^{
 ho} = 0.87^{+0.04}_{-0.05} \pm 0.01$ fm
- Proton, neutron and $\pi \, \pi$ data: $r_M^{p} = 0.87^{+0.01}_{-0.02}$ fm
- PDG 2012:
 - $r_M^p = 0.777 \pm 0.017$ fm [Bernauer et al. PRL 105, 242001 (2010)]
- $r_M^p = 0.876 \pm 0.019$ fm [Borisyuk et al. 2010]
- $r_M^p = 0.854 \pm 0.005$ fm [Belushkin et al. 2007]
- Future direction:

analyze other data sets, e.g. high precision data from [Bernauer et al. PRL **105**, 242001 (2010)]