Radiatively-driven natural SUSY with mixed axion/WIMP dark matter

Dan Mickelson

University of Oklahoma

May 5, 2014

With emphasis on the *WIMPs*, for more axions, stick around for Dr. Kyu Jung Bae's talk.

Status of SUSY

- $m_h = 125.5 \pm 0.5 \text{ GeV}$
- Scalars in need of protective symmetry: SUSY
- m_h falls within narrow MSSM expectation
- *m_h* requires highly mixed TeV scale stops
- f LHC: no SUSY yet; $m_{\tilde{g}}>1.3$ TeV, $m_{\tilde{q}}>1.7$ TeV
- MSSM fine-tuned at 0.1%?
- Is SUSY in trouble?
 - How does this conception arise?

SM fine-tuning

• Fine-tuning in the SM:

Scalar potential:
$$V(\phi) = -\mu^2(\phi)^2 + \frac{\lambda}{2}(\phi)^4$$

 $m_h^2 = m_h^2 + \delta m_h^2$
 $m_h^2 = \sqrt{2}\mu^2; \quad \delta m_h^2 \sim \frac{c}{16\pi^2}\Lambda^2$

These two are *independent* if one is huge, can dial the other to huge negative

$$\Delta_{SM} \equiv \delta m_h^2 / (m_h^2/2)$$

 $\Delta_{\textit{SM}} < \mathcal{O}(1) \Rightarrow \Lambda \sim 1 \text{TeV} \quad \text{ New physics at } 1 \text{ TeV!}$

EWFT-simplest approach to fine-tuning

$$\frac{M_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \sim -m_{H_u}^2 - \mu^2$$

(weak-scale relation and parameters, μ from superpotential, not SM Higgs mass parameter) With

$$\begin{split} \Sigma_{u}^{u}(\tilde{t}_{1,2}) &= \frac{3}{16\pi^{2}} F(m_{\tilde{t}_{1,2}}^{2}) \left[f_{t}^{2} - g_{Z}^{2} \mp \frac{f_{t}^{2} A_{t}^{2} - 8g_{Z}^{2} (\frac{1}{4} - \frac{2}{3} x_{W}) \Delta_{t}}{m_{\tilde{t}_{2}}^{2} - m_{\tilde{t}_{2}}^{2}} \right] \\ \Delta_{t} &= (m_{\tilde{t}_{L}}^{2} - m_{\tilde{t}_{R}}^{2})/2 + m_{Z}^{2} \cos 2\beta (\frac{1}{4} - \frac{2}{3} x_{W}) \text{ and } x_{W} \equiv \sin^{2} \theta_{W} \\ F(m^{2}) &= \left(\log \frac{m^{2}}{Q^{2}} - 1 \right) \text{ with scale choice of } Q^{2} = m_{\tilde{t}_{1}} m_{\tilde{t}_{2}} \end{split}$$

Define: $\Delta_{\rm EW} \equiv \max_i |C_i| / (M_Z^2/2)$, e.g. $C_{H_u} = -m_{H_u}^2 \tan^2 \beta / (\tan^2 \beta - 1)$

- \bullet Necessary for $-m_{H_u}^2, \mu^2,$ and $-\Sigma_u^u$ be near $m_Z^2/2$
- Large A_t from $A_0 \sim \pm 1.6 m_0$ drives Σ_u^u down while raising m_h
- μ required to lie in 100 300 GeV range

Large log fine-tuning in the MSSM

Start with Higgs mass:

$$\begin{split} m_h^2 &\simeq \mu^2 + m_{H_u}^2 + \delta m_{H_u}^2 \\ \frac{dm_{H_u}^2}{dt} &= \frac{1}{8\pi^2} \left(-\frac{3}{5} g_1^2 M_1^2 - 3g_2^2 M_2^2 + \frac{3}{10} g_1^2 S + 3f_t^2 X_t \right) \\ X_t &= m_{Q_3}^2 + m_{U_3}^2 + m_{H_u}^2 + A_t^2 \end{split}$$

Usually ignore gauge terms, S term, and m_{H_u} then integrate. Gives:

$$\delta m_{H_u}^2|_{rad} \simeq -\frac{3f_t^2}{8\pi^2} (m_{Q_3}^2 + m_{U_3}^2 + A_t^2) \ln \left(\Lambda^2/M_{SUSY}^2\right)$$

 $\Delta_{HS} \equiv \delta m_{H_u}^2/m_h^2/2 \stackrel{<}{\sim} 10 \Longrightarrow m_{\tilde{t}_{1,2}}, m_{\tilde{b}_1} \stackrel{<}{\sim} 200 \text{ GeV} \ m_{\tilde{g}} \stackrel{<}{\sim} 600 \text{ GeV}$

Large log fine-tuning in the MSSM

BUT

- $m_{H_u}^2$ and $\delta m_{H_u}^2$ are **not independent**
- If one is dialed to be large, the other also changes \Rightarrow Combine them:

$$(m_{H_u}^2 + \delta m_{H_u}^2)$$

which is just $m_{H_u}^2(m_{\text{weak}})!$

• Then we have

$$m_h^2 \simeq \mu^2 + m_{H_u}^2$$

which allows cancellations not apparent in log only term!

Starting to look like $\Delta_{\rm EW}...$

EENZ/BG fine-tuning

Regrouping dependent terms similar to measure used by EENZ and BG:

$$\Delta_{
m BG} \equiv {\sf max}_i |c_i| = igg| rac{\partial \ln M_Z^2}{\partial \ln a_i}$$

 a_i are parameters of the theory. Expressing m_Z in terms of high scale parameters (Abe, Kobayashi, Omura; S.P. Martin):

$$\begin{split} m_Z^2 &\simeq & -2.18\mu^2 + 3.84M_3^2 + 0.32M_3M_2 + 0.047M_1M_3 - 0.42M_2^2 \\ &+ 0.011M_2M_1 - 0.012M_1^2 - 0.65M_3A_t - 0.15M_2A_t \\ &- 0.025M_1A_t + 0.22A_t^2 + 0.004M_3A_b \\ &- 1.27m_{H_U}^2 - 0.053m_{H_d}^2 \\ &+ 0.73m_{Q_3}^2 + 0.57m_{U_3}^2 + 0.049m_{D_3}^2 - 0.052m_{L_3}^2 + 0.053m_{E_3}^2 \\ &+ 0.051m_{Q_2}^2 - 0.11m_{U_2}^2 + 0.051m_{D_2}^2 - 0.052m_{L_2}^2 + 0.053m_E^2 \\ &+ 0.051m_{Q_1}^2 - 0.11m_{U_1}^2 + 0.051m_{D_1}^2 - 0.052m_{L_1}^2 + 0.053m_E^2 \end{split}$$

BUT

$$m_{Q_{1,2}} = m_{U_{1,2}} = m_{D_{1,2}} = m_{L_{1,2}} = m_{E_{1,2}} \equiv m_{16}(1,2)$$
$$m_{H_{U}}^2 = m_{H_{d}}^2 = m_{16}^2(3) \equiv m_0^2$$

-Blue gives $\sim 0.014 m_{16}^2(1,2)$ -Red gives $\sim 0.027 m_0^2$

EENZ/BG fine-tuning

For any given hidden sector in supergravity, get

$$egin{array}{rcl} m_0 &\sim& a_{m_0} \cdot m_{3/2} \ m_{1/2} &\sim& a_{m_{1/2}} \cdot m_{3/2} \ A_0 &\sim& a_{A_0} \cdot m_{3/2} \end{array}$$

This will give full cancellation/correlation possibilities!

$$\mathsf{m}^2_\mathsf{Z}\simeq -2\mu^2-\mathsf{a}\cdot\mathsf{m}^2_{3/2}$$

- Can still have low fine-tuning if a is small
 - Both μ^2 and $a \cdot m_{3/2}^2 \sim m_Z^2$
- Δ_{BG} measures EWFT in multi-parameter effective theories
 - With larger number of parameters, correlations are lost; leading to overestimate
- Value changes from theory to theory-model dependent even with same spectra unless correlations are considered

Now $\Delta_{\rm BG}$ starting to look like $\Delta_{\rm EW}$ and $\Delta_{\rm HS}!$

Radiatively-driven natural SUSY (RNS)

Baer, Barger, Huang, Mustafayev, Tata, *Phys. Rev. Lett.* 109 (2012) 161802 Baer, Barger, Huang, Mickelson, Mustafayev, Tata, *Phys. Rev.* D 87 (2013) 115028

Figure: Baer, Barger, Mickelson; Phys. Rev. D 88, (2013) 095013, arXiv:1309.2984 • light higgsino-like \widetilde{W}_1^{\pm} and $\widetilde{Z}_{1,2}$ with masses $\sim 100 - 300 \text{ GeV}$

- gluinos with $m_{\widetilde{g}} \sim 1-4$ TeV
- top squarks with $m_{\tilde{t}_1} \sim 1-2$ TeV and $m_{\tilde{t}_2} \sim 2-5$ TeV
- first/second generation squarks and sleptons with $m_{\tilde{q},\tilde{l}} \sim 1-8$ TeV-can be raised to 20-30 TeV if $m_0(1,2) > m_0(3)$ is allowed.

RNS in the NUHM2 model

- *m*₀, *m*_{1/2}, *A*₀, tan β, *m*_{H_u}, *m*_{H_d}
 ► Trade *m*_{H_u}, *m*_{H_d} for μ, *m*_A
- $m_h \approx 125~{\rm GeV}$

- low $\mu \sim 100-200~{
 m GeV}$
- stops at 1-3 TeV, large mixing

Relic abundance of higgsino-like WIMPs

 $<\sigma v>$ annihilate rate huge for higgsinos ... relic density is low: $\Omega h^2 \propto 1/<\sigma v>$

Green points excluded by detection experiments

Blue points- $\Delta_{\rm EW} < 100$ Red points- $\Delta_{\rm EW} < 50$

Thermally underproduced by factors of 10-20

Bulk of DM composed of axions-needed anyway to solve Strong CP fine-tuning

Direct detection of higgsinos-rescaled for local abundance In RNS, WIMP scatters mainly via $\tilde{Z} - \tilde{Z} - h$ $\mathcal{L} \ni -X_{11}^h \tilde{Z}_1 \tilde{Z}_1 h X_{11}^h = -\frac{1}{2} \left(v_2^{(1)} \sin \alpha - v_1^{(1)} \cos \alpha \right) \left(g v_3^{(1)} - g' v_4^{(1)} \right)$ (non-negligible gaugino cont.)

$$\begin{split} \xi &= \Omega^{std}_{\widetilde{Z}_1} h^2 / 0.11 \\ \text{-rescaling factor} \end{split}$$

New LUX results are already digging into parameter space!

Xe-1ton to be deployed soon!

Can test completely with a ton scale detector or equivalent (subject to minor caveats)

Indirect detection of higgsinos via halo annihilations

 $\xi = \Omega^{std}_{\widetilde{Z}_1} h^2 / 0.11 \text{ -rescaling} \\ \text{factor now squared}$

Currently out of reach, but some parameter points exluded by direct detection experiments

gamma-ray signal \sim 10-20 times below current limits

Indirect detection of higgsino-like WIMPs via solar neutrinos

- No rescaling factor needed
- Dependent on equilibration of capture rate and annihilation rate
- ICECUBE limits penetrating parameter space

Summary

- Electroweak fine-tuning in SUSY is *not* in crisis! EWFT allowed at 10 % level in radiatively-driven natural SUSY
 - \blacktriangleright Leads to low $\mu \sim 100-300~{\rm GeV}$
- All 3 measures of fine-tuning can agree when applied properly
- Thermal WIMP (higgsino) abundance low by factors of 10-20
- Reduced abundance of higgsino-like WIMPs seeable at ton-scale detectors (Xe 1-Ton to be deployed soon!)
- Can address the Strong CP and μ problems via PQ symmetry breaking (Kim-Nilles)
- DM made up of both axions and higgsino-like WIMPs (SUSY DFSZ axion model)