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Finding New Energy Scales

I The Standard Model is not a complete theory of the Universe
I Multiple evidences for new physics
I Strong evidence for non-baryonic Dark Matter
I No new particles observed

How can we find the next energy scale?

I Naturalness ⇒ TeV scale?
I Fine-tuning dependent scale, orders of magnitude variations
I Use other fundamental principles?
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Unitarity

I Breaking of perturbative unitarity is a sign for new physics

I Fermi theory: Unitarity violated around 350 GeV
⇒ W boson at 80 GeV

I Light pion effective theory: unitarity violated around
1.2 GeV
⇒ Axial and vector resonances at 800 MeV

I Electroweak theory: unitarity violated around 1.2 TeV
⇒ Higgs boson at 125 GeV

I Can we use unitarity to constrain BSM theories?
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Effects of unitarity on couplings

Dimensionless Unitarity Dimensionful Unitarity
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Bounds on quartic couplings
Lee, Quigg, Thacker [Phys. Rev. D 16,

1519 (1977)]
Bounds on mass ratios
Schuessler, Zeppenfeld [arXiv:0710.5175]
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A recipe for constraining new models

I Applies to
I Models predicting a Dark Matter candidate
I Known production and annihilation mechanisms

I Dimensionful unitarity: upper bounds on the mass ratios
I Contracted spectrum

I Dimensionless unitarity: upper bounds on dimensionless
couplings

I Tension with Relic Abundance constraints for heavy Dark
Matter

Unitarity and Relic Abundance set an upper bound
on the masses of the new particles!

I Unitarity constraints on the Higgs portal ⇒ 10 TeV bounds
Walker [arXiv:1310.1083]
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Application: the NMSSM

I Preliminary study: Focus on the NMSSM Higgs sector
I Assume thermal Dark Matter production/annihilation
I Higgsino/Singlino Dark Matter: SUSY-Higgs portal

WNMSSM = −λŜĤu.Ĥd +
1
3κŜ3

Vsoft = m2
Hd H†

dHd + m2
Hu H†

uHu + m2
SS†S

−
(
λAλSHuHd −

1
3κAκS3 + h.c.

)

I Six parameters after EWSB

λ, κ, tan β, µ,Aλ,Aκ
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Perturbative Unitarity

Conservative estimate of the minimal amount of loop
corrections in a theory

Argand diagram

Colliders - SUSY Phenomenology Unitarity constraints on trilinear couplings in the MSSM
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Fig. 1. Scalar 2→2 tree level scattering diagrams.

The PJ are the Legendre polynomials. The factor 1/2
is a standard convention and leads to the factor 1/2 in

Eq. (1). In this normalization, extra factors of 1/
√

2
have to be included for each state with two identi-
cal particles. Higher partial waves usually give smaller
amplitudes, so only J =0, 1 amplitudes have to be con-
sidered in practice. The unitarity condition now reads

1

2i

(
T J

fi − T J∗
if

) ∼=
∑

h

T J∗
hf T J

hi . (1)

The sum is taken over intermediate states. Restriction
to only relevant and two-particle scalar states in the
sum slightly underestimates the right-hand side and
leads to conservative bounds.

The ’true’, physical matrix T J
fi is normal and can

therefore be diagonalized. The same holds for the Born
amplitude, which we use instead. The diagonalized ma-
trix T̃ J

fi and thus the eigenvalues satisfy

Im T̃ J
ii

∼= |T̃ J
ii |2 . (2)

The ’true’ eigenvalues (for any given energy
√

s) must
lie on the circle (called Argand diagram) given by (2):

y=x2+ y2 for x =Re T̃ J
ii and y =Im T̃ J

ii which implies
|x| ≤ 1/2. For the Born approximation, the phases of
the fields can be chosen such that all 2→2 amplitudes
are (nearly) real, if CP (nearly) holds. Approximat-
ing x by the corresponding Born amplitude yields the
desired unitarity bound. The circle restricts |x|≤1/2,
which is the unitarity bound generally used in the lit-
erature. A Born value of x= 1/2, y=0 needs at least1

a correction of
√

2−1≈ 41% to become unitary. Such
large corrections indicate a breakdown of perturbation
theory. In addition to the perturbative unitarity bound
of |x| ≤ 1/2 we therefore also consider |x| ≤ 1/6 as a
condition for which the Born amplitude remains suffi-
ciently small to trust perturbation theory.

2.1 A toy model

Figure 1 shows generic tree level Feynman graphs for
ϕ1ϕ2 → ϕ3ϕ4 scattering with trilinear couplings of
(possibly different) scalar fields ϕl (l=1,.., 5). The cor-
responding amplitudes are A2/(q2− m2

5), where q2 =
s, t, u is one of the Mandelstam variables, and A stands
for the trilinear couplings. t and u depend on

√
s, cos θ,

and the masses ml of the exterior particles. Project-
ing onto partial waves, the amplitude for J = 0 has a
structure roughly like:

T J=0
fi ∼ 1

16π

λ
1/4
f λ

1/4
i

s

A2

max{s, m2
5}

, (3)

1 ’At least’ means that this would be the minimal case
where the correction directly hits the nearest circle point.

where a factor of 2 has been assumed to account for the
partial wave projection. The second factor is smaller
than 1 and the third factor becomes large if both the
scattering energy

√
s and the mass of the internal par-

ticle are small compared to the couplings A. Highest
values are usually found for energies near the kine-
matic threshold, i.e. at energies where the model should
work properly, in contrast to weak boson scattering in
the SM [2,3].

2.2 Handling poles

Clearly the Born amplitudes are not sufficient to de-
scribe scattering processes where intermediate parti-
cles become on-shell. In the s channel in Figure 1 this
happens when

√
s=m5. Born amplitudes only will be

used for unitarity considerations and s-channel poles
are cut out by the condition

|√s − m|2 > a m Γ (Q=b m) . (4)

Here a, b ! 1 are (suitably chosen) constants and the
’running width’ Γ (Q) of the internal particle ϕ at en-
ergy Q is approximated by the decay width via replac-
ing its mass m with the energy Q in the phase space
factor. This condition (4) has to be fulfilled for all in-
ternal particles appearing in the s channel. If this is
not the case, the amplitude is set to zero, as well as
the irreducible part of T J=0

fi this process is in, because
of possible destructive interference of matrix elements.

A width cannot be included in the Born propagator
for two reasons: First, Tfi is no longer diagonalizable
(at this level of approximation). Second, our Γ (

√
s)

grows (linearly for large
√

s) with
√

s, which is not a
good approximation to the propagator as

√
s'm.

The internal particle in the u channel of Figure
1 can also become on-shell for certain combinations
of masses. This occurs e.g. if ϕ1 can decay into ϕ4, ϕ5

and ϕ2, ϕ5 can fuse to ϕ3 (MSSM example: t̃2t̃1 → t̃2t̃1
with u channel h0 exchange when mt̃2 >mt̃1+mh). One
obtains another possibility by switching labels 1 ↔ 2
and 3 ↔ 4 or two similar conditions for the t channel
by exchange of 3↔4. The first case has the condition:

c m1 ≥ m4 + m5 ∧ m2 + m5 ≤ c m3 . (5)

with some suitably chosen constant c ! 1. Amplitudes
where a condition like in (5) is fulfilled cannot be com-
puted because the internal particle becomes on-shell
for some value of the scattering angle. The constants
a, b, c are chosen larger than one because in proximity
of a pole one encounters unphysical enhancements of
the amplitude in the pure Born approximation. Still,
some enhancement can appear in special cases.

If some Born matrix elements cannot be calculated
because of a t or u channel pole, the tree level matrix
T J

fi cannot be diagonalized. The solution is a partial
diagonalization. Assuming time reflection invariance,
we write the left-hand side of (1) as ImT J

fi. Define the

set B of all kinematically accessible states at given
√

s
from an irreducible part of T J

fi and the set C ⊂B such
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Dimensionless unitarity in the NMSSM
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For large s, only quartic
couplings remain

lims→∞|ReTij | <
1
6 ⇒ λ, κ . 2
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Dimensionful Unitarity in the NMSSM
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I mH , mA, mχ depend on Aλ,
Aκ, µ

I Apply unitarity a la
Zeppenfeld to constrain
ratios

I Energy-dependent scattering
amplitudes

⇒ Scan over s
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Relic density

Relic density anchors the heavy spectrum

‰̃ (1)

‰̃ (1)

h, H12, A12 (1)

h, H, A, SM (1)

h, H, A, SM (1)

Ã (1)⁄, Ÿ (1)

I λ and κ increase with the DM mass
I Maximal mass when λ or κ hits the unitarity bound
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Finding upper bounds: procedure

I Uniform scan over 6 parameters with the 125 GeV Higgs mass
constraint

λ, |κ| < 4, |Ai |, |µ| < 40TeV

I Apply vacuum constraints
Kanehata, Kobayashi, Konishi, Seto, Shimomura [arXiv:1103.5109]

I Unitarity: allow for at most 20% loop corrections to tree-level
amplitudes

|ReTij | ≤
1
6

I Compute relic density using MicrOmegas and NMSSMTools

Ωh2 < 0.1199 (Planck measurement)
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Results: Dark Matter

5 TeV

Higgs Funnel

I Fine Tuning Factor R = mini
|2mDM −mHi |

mHi
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Results: Higgs sector
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Summary

I Need to find new energy scales for future experiments

I Unitarity reliably indicates when new physics will appear

I Unitarity + Thermal Dark Matter hypothesis can give upper

bounds on models of new physics

I 5 TeV bounds on DM mass in the NMSSM

I New Higgs fields below 10 TeV: a case for a 100 TeV collider?
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Results: Relic Density
Outside Higgs funnel (R > 10%)
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Outside Higgs funnel (R > 10%)
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Outside Higgs funnel (R > 10%)
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Outside Higgs funnel (R > 10%)
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