Non-Standard Neutrino Interactions in the mu tau sector

Warren Wright
Pennsylvania State University

5 May 2014
Standard Interactions

\[P_{e\mu} (L=9000\text{Km}) \]

Vacuum

\[e^- \rightarrow \nu_e + W \]

\[e^- \rightarrow e^- + \nu_e \]

\[P_{e\mu} (L=9000\text{Km}) \]

Earth
More Interactions?

What about:

\[\nu_{\mu}, \nu_{\tau}, e^- \]
Beyond SM physics is expected
 – Effective theory
 – Many BSM models give NSI

Neutrino Sector is least constrained
 – New Interactions = New phenomena?
 – Describe current sub-leading phenomena
NSI Effects on Oscillation Probability

\[\epsilon_{\mu\tau} = -0.05 \]

\[\epsilon_{\mu\tau} = 0 \]

\[\epsilon_{\mu\tau} = 0.05 \]

Zenith

\[P^{\text{NH}}_{\mu\mu} \]

\[E_\nu(\text{GeV}) \]

\[0.1 \quad 0.3 \quad 0.5 \quad 0.7 \quad 0.9 \]
• PREM model
• Atmospheric Fluxes (Agraval, Gaisser, Lipari and Stanev)
• Cross Sections (Gandhi, Quigg, Reno and Sarcevic)
• Sum over contributions from:
 \[P_{e\mu}, P_{\mu\mu}, \overline{P_{e\mu}}, \overline{P_{\mu\mu}} \]
• 1yr of IceCube DeepCore Simulated Data
 – Using \(V_{\text{eff}} \) from ICDC Design Document
• Energy Bin Width = 5GeV
• 3 Zenith Bins: Core, Mantle and Crust
NSI Effects on Muon Count

Muon count from 1yr of ICDCNH

\[\Delta E_\mu \text{ (GeV)} \]
- $E_\mu=\{10.,15.\}$
- $E_\mu=\{15.,20.\}$
- $E_\mu=\{20.,25.\}$
- $E_\mu=\{25.,30.\}$
- $E_\mu=\{35.,40.\}$
- $E_\mu=\{45.,50.\}$

\[\epsilon_\mu = \{-0.2, -0.1, 0, 0.1, 0.2\} \]

\[E_\mu \text{ (GeV)} \]

Core, Mantle, Crust
\[\Delta m_{21}^2 = \theta_{12} = \theta_{13} = \delta_{cp} = \epsilon_{\alpha \beta \neq \mu \tau} = \delta_{\mu \tau} = 0 \]

\[\theta_{23} = \frac{\pi}{4} \]

\[P_{\mu \mu} = \cos^2 \left(L \left(\frac{\Delta m_{31}^2}{4E_\nu} + V_{cc}\epsilon_{\mu \tau} \right) \right) \]

\[\Delta_\epsilon P_{\mu \mu} = P_{\mu \mu} (\epsilon_{\mu \tau}) - P_{\mu \mu} (-\epsilon_{\mu \tau}) \]

\[L = \frac{(2n + 1) \pi}{\Delta m_{31}^2} E_\nu, \text{ Where } n \in \mathbb{Z} \text{ and } n \geq 0 \]
Analytical vs. Numerical

\[\Delta \varepsilon P_{\mu\mu}^{\text{NH}} \text{ with } \varepsilon_{\mu\tau} = 0.05 \]

\[\Delta \varepsilon P_{\mu\mu}^{\text{NH}} \text{ with } \varepsilon_{\mu\tau} = 0.2 \]
Mass Hierarchy Implications

\(N_{\mu}^{ICDC} \) through the core in 1yr

- \(N_{\mu}^{NH}(\epsilon_{\mu\tau} = 0) \pm 10\% \)
- \(N_{\mu}^{IH}(0 < \epsilon_{\mu\tau} < 0.01) \)

Muon Count

\(E_{\mu} \)
Mass Hierarchy Implications

N_{μ}^{ICDC} through the core in 1yr

- $N_{\mu}^{\text{NH}}(\epsilon_{\mu\tau}=0)$
- $\frac{1}{2} N_{\mu}^{\text{IH}}(\epsilon_{\mu\tau}=0)$
- $\frac{1}{2} N_{\mu}^{\text{NH}}(\epsilon_{\mu\tau}=0.00555)$
- $N_{\mu}^{\text{IH}}(\epsilon_{\mu\tau}=0.00743)$

Muon Count

E_{μ} (GeV)
Sensitivity (IH True)

χ^2 $N^{\text{NH,IH}}_\mu$ vs. $N^{\text{IH,Null}}_\mu$ (1yr)

χ^2 $N^{\text{NH,IH}}_\mu$ vs. $N^{\text{IH,Null}}_\mu$ (4yr)

- σ, 2σ, 3σ, 5σ
- NH vs IH$^{\text{null}}$
- IH vs IH$^{\text{null}}$
Summary

- NSIs have significant effects on:
 - Oscillation probability
 - Muon count

- EpsilonMuTau is sign asymmetric (unlike other NSI)
 - From numerical simulations
 - From a reduced analytic model

- This asymmetry has mass hierarchy implications
 - Hierarchy imitation
 - Hierarchy misidentification
 - Can separate effects with different experiments