PQ Symmetric Pure Gravity Mediation

Jason L. Evans

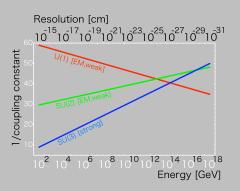
¹University of Minnesota, FTPI

Outline

Supersymmetry

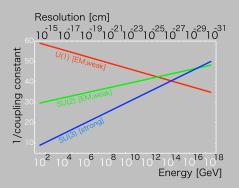
Universal Pure Gravity Mediation

Non-Universal Pure Gravity Mediation


PQ Symmetric Pure Gravity Mediation

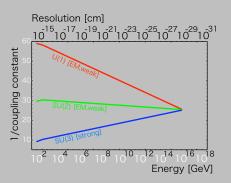
- Supersymmetry

Why SUSY


Why SUSY

Grand unification in the SM add many new *SU*(2) doublets/ another copy of SM

Why SUSY


- Grand unification in the SM
 - ► add many new *SU*(2) doublets/ another copy of SM

4 D F 4 B F 4 B F F

Why SUSY

- Grand unification in the MSSM
 - ▶ Needs $M_{SUSY} \lesssim 1000 \text{ TeV}$

Why is the SUSY Breaking Scale So High?

- ► Flavor violation suppressed for larger scalar masses
- Gravitinos decays tend to be much less problematic
 - Gravitino decays early enough if $m_{3/2} \gtrsim 10 \text{ TeV}$

$$au = rac{1}{\Gamma_{3/2}} \sim rac{M_P^3}{m_{3/2}^2} \sim s \left(rac{10 {\sf TeV}}{m_{3/2}}
ight)^3$$

ightharpoonup Reheat temperature also large enough if $m_{3/2}\gtrsim$ 10 TeV

$$T_{3/2} = \left(rac{\pi^2 g_*}{90}
ight)^{-1/4} \sqrt{M_P \Gamma_{3/2}} \sim exttt{MeV} \; \left(rac{m_{3/2}}{M_P}
ight)^{3/2}$$

$$\tilde{G}
ightarrow ilde{\chi} \gamma$$

Pure Gravity Mediation

Strongly stabilized SUSY breaking sector

$$\mathcal{K} = |Z|^2 - rac{|Z|^4}{\Lambda^2} \qquad \mathcal{W} = Z\mu^2$$

A-terms are also suppressed

$$K = rac{Z^\dagger Z}{M_P^2} H_u^\dagger H_u \quad o \quad rac{Z^\dagger}{M_P} rac{F_Z}{M_P} H_u F_{H_u}^\dagger$$

► Supersymmetry is broken dynamical (i.e. no Singlets)

$$h_{lphaeta} = rac{Z^\dagger Z}{M_P^2} \sim rac{\Lambda^2}{M_P^2} rac{F_Z}{M_P}$$

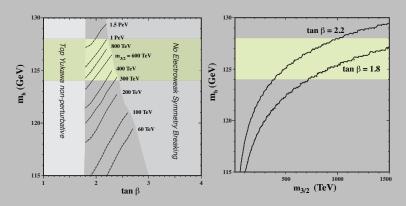
4 D > 4 D >

Pure Gravity Mediation: Continued

Gauginos are generated by anomalies

$$M_a = rac{b_a g_a^2}{16\pi^2} m_{3/2} \qquad b_a = (-33/5, -1, 3)$$

Scalar masses the same as mSUGRA


$$m_0=m_{3/2}$$

- ► Single parameter $m_{3/2}$
 - μ and tan β determined by minimization condition
- ► Radiative EWSB doesn't work
- ightharpoonup Adding Giudice-Masiero term frees $\tan \beta$ for successful EWSB
 - ► Two free parameters

 $_0$ tan eta

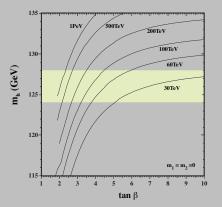
Lightest Higgs Boson Mass

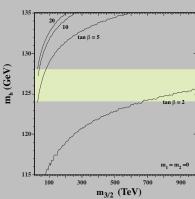
 $ightharpoonup m_{3/2} = 300 - 1500 \text{ TeV}$ gives $m_h = 124 - 128 \text{ GeV}$

Non-Universal Higgs Masses

- ▶ Universal Case, $\tan \beta \lesssim 2.7$ so that $m_{H_{II}}^2 < 0$
- ▶ Non-universal Higgs masses relax $\tan \beta$ constraint
- ► Generic non-universalities from corrections to Kähler

$$K^{(H)} = \left(1 + a \frac{ZZ^*}{M_P^2}\right) H_1 H_1^* + \left(1 + b \frac{ZZ^*}{M_P^2}\right) H_2 H_2^*$$


▶ Higgs masses free parameters


$$m_1^2 = (1 - 3a)m_{3/2}^2$$
 $m_2^2 = (1 - 3b)m_{3/2}^2$

4 D > 4 D > 4 D > 4 D > 4 D > 6

Higgs Mass Constraints

- $tan \beta$ is a free parameter
- ► Higgs mass constraint on $m_{3/2}$ relaxed

Peccei-Quinn Symmetry

- ▶ PQ symmetry forbids tree-level µ term
- ightharpoonup regenerated from PQ breaking field

$$W\supset k\frac{P^2}{M_P}H_1H_2$$

► If dark matter is the axion

$$\Omega_a h^2 = 0.18 \left[\theta^2 + \left(\frac{H_I}{2\pi F_{PQ}^I} \right)^2 \right] \left(\frac{F_{PQ}}{10^{12} \, {
m GeV}} \right)^{1.19} \left(\frac{\Lambda}{400 \, {
m MeV}} \right)^2$$

► PQ breaking scale (10¹² GeV) sets Higgs bilinear mass

$$u=krac{\langle P
angle^2}{M_P}\sim k~{\cal O}(100)~{
m TeV}$$

Why is the SUSY Scale $\mathcal{O}(100)$ TeV

- ▶ Higgs soft breaking terms set by $m_{3/2}$
 - $ightharpoonup m_{H_{II}}^2 \sim -m_{3/2}^2$
 - ightharpoonup B-term also set by $m_{3/2},\,B\sim m_{3/2}$
- ▶ EWSB determined by $\mathbf{Det}(m_H^2) < 0$.

$${f Det}(m_H^2) \sim (m_{H_u}^2 + \mu^2)(m_{H_d}^2 + \mu^2) - (B\mu)^2$$

- Two ways to get EWSB
 - $m_{H_u}^2 \sim \mu^2$ with no constraint on $B\mu$
 - $\blacktriangleright \ \mu^2 \gg m_{H_u}^2$ and $B\mu \sim \mu^2$
- ▶ Either way, $m_{3/2} \gtrsim \mu$

PQ breaking Before or After Inflation

- ► PQ Breaking after inflation
 - Cosmic strings formed
 - Domain walls formed
- ► PQ breaking before inflation
 - Cosmic strings and domain walls inflated away
 - Isocurvature perturbations

Isocurvaure Perturbations

During inflation vevs of scalars are non-zero

$$\langle \langle \phi^2 \rangle = \left(\frac{H_I}{2\pi} \right)^2$$

► Hubble during inflation determined by BICEP2

$$H_I \simeq 6 imes 10^{14}$$

During inflation axion massless

$$\langle a^2 \rangle = \left(\frac{H_I}{2\pi} \right)^2$$

► Large H_I means large axion perturbations

Isocurvaure Perturbations: Continued

lacktriangle Large axion perturbations o isocurvature perturbations

$$\left[\theta^2 + \left(\frac{H_I}{2\pi F_{PQ}^I}\right)^2\right] \left(\frac{H_I}{2\pi F_{PQ}^I}\right)^2 \left(\frac{F_{PQ}}{10^{12} {\rm GeV}}\right)^{2.38} < 3.6 \times 10^{-11}$$

► Axion field fluctuations are large

$$rac{\langle a^2
angle}{(F_{PQ}^I)^2} = \left(rac{H_I}{2\pi F_{PQ}^I}
ight)^2 \sim 10^4$$

- Suppressing quantum fluctuations
 - If $F_{PQ}^{I} \gg F_{PQ}$ quantum fluctuations suppresed

Generating Large F_{PQ}^{I}

▶ PQ breaking sector

$$W = \lambda X (PQ - \Lambda^2)$$

► Giudice-Masiero like term in Kähler potential

$$K=|P|^2+|Q|^2-c_{PQ}(PQ+P^\dagger Q^\dagger)$$

► During inflation SUSY breaking masses generated

$$\mathcal{L}_{soft} \supset c_l \mathcal{H}^2 \left(|P|^2 + |Q|^2 - c_{PQ} (PQ + P^\dagger Q^\dagger)
ight)$$

• $c_{PQ} >$ 1 and $\lambda \lesssim 10^{-4}
ightarrow F_{PQ}^I \sim M_P$

Generating Large F_{PO}^{I} : Continued

ightharpoonup Strong dynamics break PQ symmetry, $g_0(M_P)\sim 4\pi$

$$f = \frac{1}{g_0^2} + \phi$$

▶ During inflation $\phi \sim 0$

$$F_{PQ}^I = \Lambda_{PQ} \sim M_P$$

▶ After inflation $\phi \sim 1$

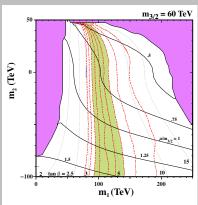
$$\Lambda_{PQ} \sim F_{PQ}$$

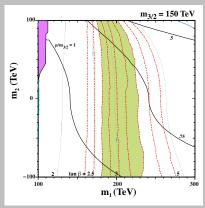
► Simple theory for ϕ

$$W_{\phi} = \lambda' Y (\lambda'' \phi^2 - M_P^2)$$

PQ Symmetric Pure Gravity Mediation

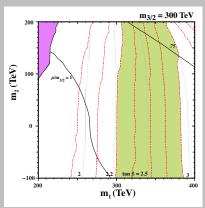
▶ PQ symmetry forbids Giudice-Masiero term

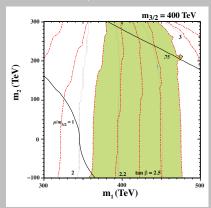

$$\mu = k \frac{\langle P \rangle^2}{M_P}$$
 $B\mu = -m_{3/2}\mu$


- ➤ GM term needed for universal mass but forbidden
- ► Non-universal Higgs masses sufficient

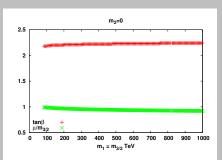
$$m_{3/2}$$
 m_1 m_2

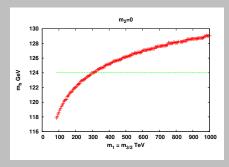
PQPGM Parameter Sapce


▶ Higgs mass consistent with PQPGM



PQPGM Parameter Sapce: Continued


► Higgs mass good for broad range of m_{3/2}



Single Parameter PQPGM

► For partial no scale or pNGM, one parameter needed

Conclusions

- ► Still motivations for SUSY (GUT, Higgs Mass, etc)
- ► Higgs Mass suggest we loosen views on naturalness
- ➤ No singlets in SUSY breaking sector fixes Polonyi problem
- ▶ No singlets gives hierarchy between gauginos and scalars.
- ► Large sfermion masses explain Higgs mass
- ► Higgs bilinear can be forbidden by PQ symmetry
- ▶ If axion is dark matter $\mu \sim$ 100 TeV
- ▶ EWSB requires $\mu \sim m_{3/2}$
- Single parameter theory can explain everything