

Raising the Higgs Mass in SUSY with $t-t^\prime$ Mixing A new way to address the Little Hierarchy Problem

Kevin Grizzard

Johns Hopkins University Work done with C. Faroughy and D. Kaplan

May 5, 2014

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction	The Model	The Effects of Mixing	Experimental Constraints	Conclusions
Outline				

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- 3 The Effects of Mixing
- Experimental Constraints

5 Conclusions

Introduction	The Model	The Effects of Mixing	Experimental Constraints	Conclusions
1 Intro	oduction			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 2 The Model
- 3 The Effects of Mixing
- 4 Experimental Constraints
- **5** Conclusions

The Little Hierarchy Problem

 In the MSSM, vacuum stability (in D-flat directions) + EWSB lead to the tree level upper bound:

$$m_h^0 < m_Z \cos(2\beta) \le 91 {\rm GeV}$$

• Need radiative corrections δm_h to raise m_h^0 to 125 GeV.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Radiative Corrections in MSSM

• Radiative corrections go as (M. Carena, et al.):

$$[\delta m_h^2] \subset \frac{3}{2\pi^2} y_{33}^4 v_u^2 [t + \frac{X_{33}}{2} + \frac{1}{16\pi^2} \left(\frac{3}{2} y_{33}^2 - 32\pi\alpha_s\right) (X_{33}t + t^2)]$$

with

$$t = \log(\frac{\tilde{m}_{\tilde{t}}^2}{m_t^2}), X_{33} \propto (A_{33}^u)^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Radiative Corrections in MSSM

• Radiative corrections go as (M. Carena, et al.):

$$[\delta m_h^2] \subset \frac{3}{2\pi^2} y_{33}^4 v_u^2 [t + \frac{X_{33}}{2} + \frac{1}{16\pi^2} \left(\frac{3}{2} y_{33}^2 - 32\pi\alpha_s\right) (X_{33}t + t^2)]$$

with

$$t = \log(\frac{\tilde{m}_{\tilde{t}}^2}{m_t^2}), X_{33} \propto (A_{33}^u)^2.$$

- To raise the Higgs Mass in the MSSM:
 - **1** need large A_{33}^u
 - 2 need large $\tilde{m}_{\tilde{t}} (\gtrsim 3 \text{TeV})$
- Grows only *logarithmically* with $\tilde{m}_{\tilde{t}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What else can be done to raise m_h ?

Add a 4^{th} chiral generation of quarks?

• No. No longer viable.

What else can be done to raise m_h ?

Add a 4^{th} chiral generation of quarks?

• No. No longer viable.

Instead, make it vector-like: $MSSM+10 + \overline{10}$.

- New quarks now get most of their mass from $\mu_{10} {f 10} ~{f ar 10}$
- 10's, $\bar{\mathbf{10}}$'s reps of $SU(5) \rightarrow$ maintain unification.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What else can be done to raise m_h ?

• New terms in superpotential:

$$W \subset y_{44}^u Q_4 H_u U_4^c + \mu_Q \bar{Q}_4^c Q_4 + \mu_U \bar{U}_4 U_4^c$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What else can be done to raise m_h ?

• New terms in superpotential:

$$W \subset y_{44}^u Q_4 H_u U_4^c + \mu_Q \bar{Q}_4^c Q_4 + \mu_U \bar{U}_4 U_4^c$$

• New terms in radiative corrections:

$$[\delta m_h^2]_{y_{44}} \subset \frac{3}{2\pi^2} y_{44}^4 v^2 \sin^4 \beta [t_V + \frac{X_{44}}{2}]$$

(S.Martin '10; P.Graham, et al. '10)

What else can be done to raise m_h ?

• New terms in superpotential:

$$W \subset y_{44}^u Q_4 H_u U_4^c + \mu_Q \bar{Q}_4^c Q_4 + \mu_U \bar{U}_4 U_4^c$$

• New terms in radiative corrections:

$$[\delta m_h^2]_{y_{44}} \subset \frac{3}{2\pi^2} y_{44}^4 v^2 \sin^4 \beta [t_V + \frac{X_{44}}{2}]$$

(S.Martin '10; P.Graham, et al. '10)

• For $m_h = 125$ GeV, danger of Landau poles in Yukawas marginally above EWK scale

くして 前 ふかく 山下 ふゆう ふしゃ

- Keep MSSM+ $10+\overline{10}$.
- Allow mixing between 3^{rd} and 4^{th} generation:
 - ① Increases top Yukawa y_{33} up to 6%
 - 2 Raises m_h quickly since $\delta m_h^2 \propto y_{33}^4$
 - Solution E.g. $1.06^4 = 1.26 \rightarrow \text{stop contribution increases by up to 26\%!}$

- Keep MSSM+ $10+\overline{10}$.
- Allow mixing between 3^{rd} and 4^{th} generation:
 - ① Increases top Yukawa y_{33} up to 6%
 - 2 Raises m_h quickly since $\delta m_h^2 \propto y_{33}^4$
 - § E.g. $1.06^4 = 1.26 \rightarrow$ stop contribution increases by up to 26%!

• Can get $m_h = 125$ GeV and push Landau poles up to GUT scale while keeping soft terms < TeV.

Introduction	The Model	The Effects of Mixing	Experimental Constraints	Conclusions

- 3 The Effects of Mixing
- 4 Experimental Constraints
- **5** Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The MSSM + 10 + 10 with mixing

 \bullet Mixing between 3^{rd} and 4^{th} generations:

$$W \subset +y_{44}^{u}Q_{4}H_{u}U_{4}^{c} + \mu_{4}\bar{Q}_{4}^{c}Q_{4} + \mu_{4}\bar{U}_{4}U_{4}^{c} + y_{34}^{u}Q_{3}H_{u}U_{4}^{c} + y_{43}^{u}Q_{4}H_{u}U_{3}^{c}$$

$${f 0}\,\,\, y_{34}$$
, $y_{43}\sim {\cal O}(1)$ and $y_{44}=0$ to emphasize mixing

・ロト・日本・モート モー うへぐ

The MSSM $+ 10 + \overline{10}$ with mixing

• Mixing between 3^{rd} and 4^{th} generations:

$$W \subset +y_{44}^{u}Q_{4}H_{u}U_{4}^{c} + \mu_{4}\bar{Q}_{4}^{c}Q_{4} + \mu_{4}\bar{U}_{4}U_{4}^{c} + y_{34}^{u}Q_{3}H_{u}U_{4}^{c} + y_{43}^{u}Q_{4}H_{u}U_{3}^{c}$$

 $\label{eq:y34} \begin{array}{l} \mbox{ } y_{34}, \, y_{43} \sim \mathcal{O}(1) \mbox{ and } y_{44} = 0 \mbox{ to emphasize mixing} \end{array}$ Also

$$I Set \ \mu_Q = \mu_U \equiv \mu_4$$

- **2** Same soft mass Δm for all squarks
- **3** Large $\tan \beta$
- **(4)** Ignore all leptons, 1^{st} and 2^{nd} generation quarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Particle Content

Supermultiplet	Scalars	Fermions
Q_3	$(ilde{u_3}, ilde{d_3})$	(u_3, d_3)
U_3^c	\tilde{u}_3^c	u_3^c
D_3^c	$ ilde{d}_3^c$	d_3^c
Q_4	$(\tilde{u}_4, \tilde{d}_4)$	(u_4, d_4)
U_4^c	\tilde{u}_4^c	u_4^c
$ar{Q}_4^c$	$(\tilde{\bar{d}}_4^c, \tilde{\bar{u}}_4^c)$	$(\bar{d}_4^c, \bar{u}_4^c)$
\bar{U}_4	$\tilde{\overline{u}}_4$	\bar{u}_4

- Top block: MSSM fields
- Bottom block: new fields
- Barred fields in $\bar{\mathbf{10}}$ rep of SU(5)

・ロト・日本・モート モー うへぐ

Particle Content - Mass Eigenstates

Supermultiplet	Scalars	Fermions
Q_3	$(ilde{u_3}, ilde{d_3})$	(u_3, d_3)
U_3^c	\tilde{u}_3^c	u_3^c
D_3^c	$ ilde{d}^c_3$	d_3^c
Q_4	$(\tilde{u}_4, \tilde{d}_4)$	(u_4, d_4)
U_4^c	\tilde{u}_4^c	u_4^c
$ar{Q}_4^c$	$(\tilde{\bar{d}}_4^c, \tilde{\bar{u}}_4^c)$	$(\bar{d}_4^c, \bar{u}_4^c)$
\bar{U}_4	$\tilde{\bar{u}}_4$	\bar{u}_4

- Mass eigenstates
 - **1** Fermions: t, b, new quarks $t'_{1,2}$ and b'
 - 2 Scalars: $\tilde{t}_{1,2}$, $\tilde{b}_{1,2}$, non-MSSM squarks $\tilde{t}'_{1,2,3,4}$, and $\tilde{b}'_{1,2}$

Introduction	The Model	The Effects of Mixing	Experimental Constraints	Conclusions

- 3 The Effects of Mixing
- 4 Experimental Constraints

Experimental Constraints

Conclusions

Mixing and the top Yukawa

• In the MSSM, $y_{33} = \frac{m_t}{v \sin \beta}$.

Mixing and the top Yukawa

- In the MSSM, $y_{33} = \frac{m_t}{v \sin \beta}$.
- With $y_{44} = 0$ in our model:

$$y_{33} \approx 1 + \frac{1}{2} \left(\frac{\Delta^2}{1 - \Delta^2} \right) \left(y_{43}^2 + y_{34}^2 \right) + \mathcal{O}(\Delta^4)$$

with
$$\Delta \equiv v/\mu_4$$
.

Mixing and the top Yukawa

• With $y_{44} = 0$ in our model:

$$y_{33} \approx 1 + \frac{1}{2} \left(\frac{\Delta^2}{1 - \Delta^2} \right) \left(y_{43}^2 + y_{34}^2 \right) + \mathcal{O}(\Delta^4)$$

with $\Delta \equiv v/\mu_4$.

- $\textcircled{0} \Delta > 0 \text{ increases top Yukawa}$
- 2 Mass bounds require $\Delta \lesssim 1/4$
- \bigcirc \rightarrow Increase $y_{33} \sim 6\%$
- $y_{44} \neq 0$ corrections are negligible

• To calculate δm_h we use the one-loop effective potential:

$$\Delta V = \frac{3}{32\pi^2} \left[\sum_{i=1}^6 \tilde{m}_i^2 \left(\log\frac{\tilde{m}_i^2}{Q^2} - \frac{3}{2}\right) - 2\sum_{i=1}^3 m_i^2 \left(\log\frac{m_i^2}{Q^2} - \frac{3}{2}\right)\right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Masses m_i, \tilde{m}_i are functions of y_{ij}, μ_4, A_{ij} and Δm .

• The Higgs mass in the decoupling limit is:

$$m_h^2 = M_Z^2 \cos^2 2\beta + \frac{1}{2} \left(\frac{\partial^2 (\Delta V)}{\partial v_u^2} - \frac{1}{v_u} \frac{\partial (\Delta V)}{\partial v_u} \right)$$

(ロ)、(型)、(E)、(E)、 E) の(の)

• So m_h is also a function of $\mu_4, \Delta m, A_{ij}, y_{ij}$.

• The Higgs mass in the decoupling limit is:

$$m_h^2 = M_Z^2 \cos^2 2\beta + \frac{1}{2} \left(\frac{\partial^2 (\Delta V)}{\partial v_u^2} - \frac{1}{v_u} \frac{\partial (\Delta V)}{\partial v_u} \right)$$

- So m_h is also a function of $\mu_4, \Delta m, A_{ij}, y_{ij}$.
- Fixing $m_h, \mu_4, \Delta m, A_{ij}$, and a relation between the y_{ij} 's, the $|y_{ij}|$ required are uniquely fixed.

What weak-scale Yukawas yield m_h ?

"Fixing $m_h, \mu_4, \Delta m, A_{ij}$, and a relation between the y_{ij} 's, the $|y_{ij}|$ required are uniquely fixed."

- Relations between y_{ij} 's:
 - **1** $|y_{34}| = |y_{43}|$ large, $y_{44} = 0$
 - 2 y_{43} large, others 0
 - 3 y_{34} large, others 0
 - y_{44} large, others 0 (for comparison)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

What weak-scale Yukawas yield m_h ?

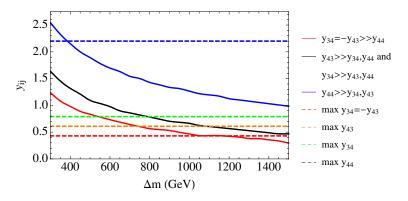


Figure: $A = \Delta m$, $\mu_4 = 900$ GeV. Above the dotted lines requires Yukawas larger than allowed by EWPM and is thus ruled out. This gives a lower bound on Δm .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Great. What about Landau poles?

Study effects on Λ_L from:

• Mixing scenarios:

$$\textcircled{1}|y_{34}| = |y_{43}| \text{ large, } y_{44} = 0$$

2 y_{43} large, others 0

3 y_{34} large, others 0

- ④ y_{44} large, others 0
- A-terms
- Vector-like mass μ_4

Top Yukawa Landau Poles: Mixing

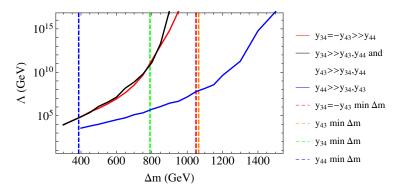


Figure: $A = \Delta m$, $\mu_4 = 900$ GeV. Soft masses left of the dotted lines require y_{ij} larger than allowed by EWPM. $\Lambda_L < 1$ TeV is not plotted.

Mixing pushes Λ_L above GUT scale with soft parameters $\lesssim 1$ TeV.

Top Yukawa Landau Poles: A-terms

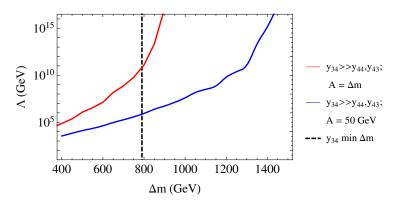


Figure: y_{34} large, $\mu_4 = 900$ GeV, $y_{44} = y_{43} = 0$. Soft masses left of the dotted lines require y_{ij} larger than allowed by EWPM.

Landau poles get significantly pushed up by larger A-terms.

・ロト・日本・日本・日本・日本・日本・日本

Top Yukawa Landau Poles: μ_4

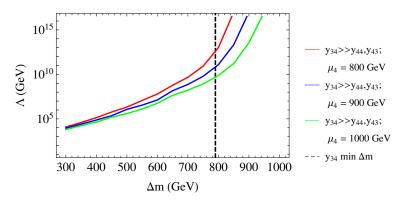


Figure: y_{34} large, $\mu_4 = 900$ GeV, $y_{44} = y_{43} = 0$. Soft masses left of the dotted lines require y_{ij} larger than allowed by EWPM.

For a given soft mass, Λ_L increases as μ_4 decreases.

Introduction	The Model	The Effects of Mixing	Experimental Constraints	Conclusions

1 Introduction

- 3 The Effects of Mixing
- 4 Experimental Constraints

5 Conclusions

Constraints from Experiments

Studied constraints from

- Electroweak precision measurements (S and T parameters)
- $\bullet~{\rm Measurements}~{\rm of}~V_{tb}^{\rm CKM}$
- Higgs production
- LHC direct searches

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Constraints from Experiments

EWPM and LHC direct searches are most constraining.

- LHC: $m_{t'}, m_{b'} \gtrsim 700 800 \text{ GeV}$
- \rightarrow take $\mu_4 \gtrsim 800~{\rm GeV}$

EWPM constraints

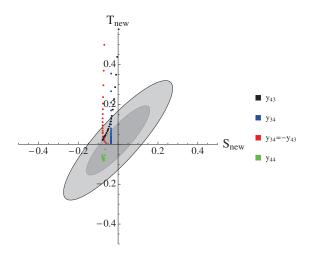


Figure: S_{new} and T_{new} for each of our mixing scenarios. For each, $\mu_4 = 900 \text{ GeV}$, A = 600 GeV, and Δm varies from 300 to 1500 GeV.

Experimental Constraints

- 日本 - 1 日本 - 日本 - 日本

$\mu_Q \neq \mu_U$ can hurt or help

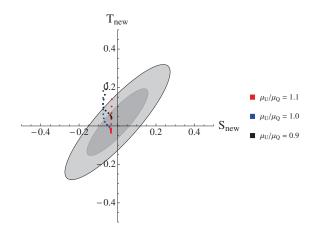


Figure: S_{new}, T_{new} for ratios $\mu_U/\mu_Q = 0.9, 1.0, 1.1$, and Yukawa values $y_{34} = -y_{43}$ ranging from 0.01 to 0.56 in steps of 0.05.

Experimental Constraints

э

$\mu_Q \neq \mu_U$ can hurt or help

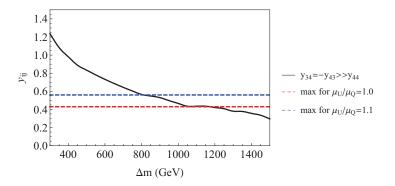


Figure: Yukawa value $y_{34} = -y_{43}$ required for $m_h = 125$ GeV. Dashed lines are max allowed for $\mu_U/\mu_Q = 1.0, 1.1$.

- $|y_{34}| = |y_{43}| \lesssim 0.43 \rightarrow |y_{34}| = |y_{43}| \lesssim 0.56$
- soft terms $\lesssim 1100~{\rm GeV} \rightarrow {\rm soft~terms} \lesssim 800~{\rm GeV}$

Introduction	The Model	The Effects of Mixing	Experimental Constraints	Conclusions

1 Introduction

- 3 The Effects of Mixing
- 4 Experimental Constraints

- Mixing raises m_h by increasing y_{33} .
- Landau poles can be pushed up with $\mu_4, \Delta m$, A-terms < TeV
 - $\Lambda_L \sim 10^{10}$ for soft masses $\sim 800 \text{ GeV}$

2 $\Lambda_L \gtrsim M_{GUT}$ for soft masses $\sim 900 \text{ GeV}$

• Constraints allow sufficiently large y_{ij} to obtain $m_h = 125$ GeV with $\mu_4, \Delta m, A <$ TeV.

Conclusions

A large parameter space exists for SUSY models with a vectorlike 4^{th} generation that passes all experimental tests. It is predictive and within the LHC's reach. The models have a moderate soft SUSY breaking scale and therefore address the little hierarchy problem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

BACKUP SLIDES

Quark Mass Matrices

$$W \subset y_{ij}^{u} Q_{i} H_{u} U_{j}^{c} + \mu_{4} \bar{Q}_{4}^{c} Q_{4} + \mu_{4} \bar{U}_{4} U_{4}^{c} + \mu H_{u} H_{d}$$

Yukawa terms in W lead to the following fermion mass matrices:

$$m_f^u \equiv \begin{pmatrix} y_{33}v_u & y_{34}v_u & 0\\ y_{43}v_u & y_{44}v_u & \mu_Q\\ 0 & \mu_U & 0 \end{pmatrix}, \quad \text{and} \quad m_f^d \equiv \begin{pmatrix} m_{\text{bot}} & 0\\ 0 & \mu_Q \end{pmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

37

Up Squark Squared Mass Matrix

After the $SU(2)_L \times U(1)_Y$ gauge symmetry is broken, Yukawa terms in W, soft terms, F terms, and D terms lead to:

$$(M_s^u)^2 = (M_f^u)^2 + \begin{pmatrix} Y_{u_3} & 0 & 0 & -y_{33}v_uX_u & -y_{34}v_uX_u & 0 \\ 0 & \mu_Q^2 + Y_{u_4} & 0 & -y_{43}v_uX_u & -y_{44}v_uX_u & B\mu \\ 0 & 0 & \mu_U^2 + Y_{\bar{u}_4} & 0 & B\mu & 0 \\ -y_{33}v_uX_u & -y_{43}v_uX_u & 0 & Y_{u_3^c} & 0 & 0 \\ -y_{34}v_uX_u & -y_{44}v_uX_u & B\mu & 0 & \mu_U^2 + Y_{u_4^c} & 0 \\ 0 & B\mu & 0 & 0 & 0 & \mu_Q^2 + Y_{\bar{u}_4^c} \end{pmatrix}$$

•
$$X_u = A + \mu \cot \beta$$
 and $X_d = A + \mu \tan \beta$.
• $Y_q \equiv \Delta m^2 + D_a$
• $D_a = (T_a^3 - Q_a \sin^2 \theta_w) \cos(2\beta) m_Z^2$ (D-terms)

 \mathcal{O}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Down Squark Squared Mass Matrix

$$(M_s^d)^2 = (M_f^d)^2 + \begin{pmatrix} m_{bot}^2 + Y_{d_3} & 0 & -m_{bot}X_d & 0\\ 0 & \mu_Q^2 + Y_{d_4} & 0 & B\mu\\ -m_{bot}X_d & 0 & m_{bot}^2 + Y_{d_3}^c & 0\\ 0 & B\mu & 0 & \mu_Q^2 + Y_{\bar{d}_4}^c \end{pmatrix}$$

•
$$X_d = A + \mu \tan \beta$$

•
$$Y_q \equiv \Delta m^2 + D_a$$

•
$$D_a = (T_a^3 - Q_a \sin^2 \theta_w) \cos(2\beta) m_Z^2$$
 (D-terms)

Top Yukawa Landau Poles: A-terms, case 2

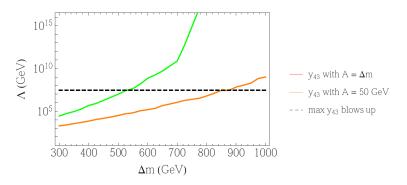


Figure: $y_{43} \gg y_{44}, y_{34}, \mu_4 = 700$ GeV, and $n_5 = 0$. y_{33} becomes non-perturbative below the dotted lines.

• For a given soft mass, the implied Landau poles get significantly pushed up by the presence of *A*-terms.

LHC phenomenology

Initial State	Intermediate state	Final State	Initial State	Intermediate State	Final State
t'	ht	bbWb	<i>b</i> ′	hb	bbb
t'	Zt	ffWb	<i>b</i> ′	Zb	ffb
t'	Wb	Wb	b'	Wt	WWb
t't	htt	bbWbWb	b'b	hb	bbbb
t't	Ztt	ffWbWb	b'b	Zb	ffbb
t't	Wbt	WbWb	b'b	Wtb	WWbb
t'bj	htbj	bbWbbj	b'tj	hbWbj	bbbWbj
t'bj	Ztbj	ffWbbj	b'tj	ZbWbj	ffbWbj
t'bj	Wbbj	Wbbj	b'tj	WtWbj	WWbWbj

Table: Possible event topologies with initial state singly produced t' or b'.

- t' decays through three decay chanels: ht, Zt, or Wb.
- Single production t'bj via t-channel W, can have a larger cross section than t't.

LHC phenomenology continued ...

Initial State	Intermediate state	Final State	Initial State	Intermediate State	Final State
<i>t't'</i>	htht	bbWbbbWb	<i>b'b'</i>	hbhb	bbbbbb
t't'	htZt	bbWbffWb	<i>b'b'</i>	hbZb	bbbffb
t't'	htWb	bbWbWb	<i>b'b'</i>	hbWt	bbWWb
t't'	ZtZt	ffWbffWb	<i>b'b'</i>	ZbZb	ffbffb
t't'	ZtWb	ffWbWb	<i>b'b'</i>	ZbWt	ffbWWb
t't'	WbWb	WbWb	<i>b'b'</i>	WtWt	WWbWWb

Table: Possible event topologies with initial state pair produced t' or b'.

- As many as six b jets.
- As many as six W's (if Higgs decays via the WW^*).
- $t'bj \rightarrow Wbbj$ and $t't' \rightarrow WbWb$ good for discovery since m_{Wb} would reconstruct to $m_{t'}$ and the signals are relatively clean.

Contribution to S and T from new particles

• Standard test of any BSM model

$$S \propto \left(\Pi_{ZZ}(M_Z^2) - \Pi_{ZZ}(0) - \frac{c_W^2}{c_W s_W} \Pi_{Z\gamma}(M_Z^2) - \Pi_{\gamma\gamma}(M_Z^2) \right)$$

• T is sensitive to isospin violation $(m_{t'} - m_{b'})$.

$$T \quad = \quad \frac{1}{\alpha} \left(\frac{\Pi_{WW}(0)}{M_W^2} - \frac{\Pi_{ZZ}(0)}{M_Z^2} \right)$$

The Π 's are the vector boson self-energies.

Self-energy diagrams needed for S and T

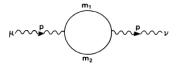


Figure: vector boson self-energies from fermions.

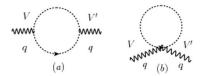


Figure: Vector boson self-energies from scalars.

Need to find all Feynan rules and new couplings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

• The loop amplitude can be shown to scale as

$$A_{gg \to h} \propto \frac{1}{\det m_f^2} \frac{\partial \det^2 m_f}{\partial v}$$

$$m_f = \left(\begin{array}{ccc} y_{33}v\sin\beta & y_{34}v\sin\beta & 0\\ y_{43}v\sin\beta & y_{44}v\sin\beta & \mu_4\\ 0 & \mu_4 & \bar{y}_{44}v\cos\beta \end{array}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- \bullet In our model, $\bar{y}_{44}=0$ and we get $A_{gg \rightarrow h} \propto -2/v$
- This is Suppressed and has no μ_4 dependence so we can neglect this effect.

- c (K^{ud}) should lie within the margin of err
 - $(K_L^{ud})_{1,1}$ should lie within the margin of error of the measured value of $V_{tb}^{\rm CKM}$.
 - We neglect mixing between the first two generations and the higher generations.
 - CMS (unitary of V^{CKM} not assumed): $|V_{tb}^{CKM}| = 1.14 \pm 0.22$. We therefore require $0.92 < (K_L^{ud})_{1,1} < 1.36$.

- We scan over parameter space. This restriction is always satisfied!
- These constraints are negligible.

Sanity checks for S an T

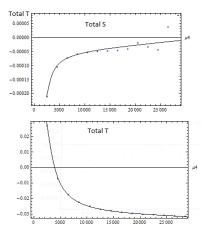


Figure: The μ_4 dependence of S and T for $y_{34} = -y_{43} \sim 0.8 \gg y_{44}$, (hence $y_{33} \sim 1.04$). Both S and T remain very small as $\mu_4 \rightarrow \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

・ロット (雪) (日) (日) (日)

Mass Bounds from LHC Direct Searches: CMS

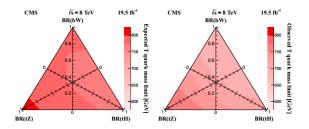


Figure: Present status of heavy vector-like top searches with 19.5 fb^{-1} of 8 TeV data with the CMS detector (Figure taken from CMS).

CMS: Model independent lower limits for $m_{t'}$ between 687 and 782 GeV for all possible branching fractions.

Mass Bounds from LHC Direct Searches: ATLAS (t')

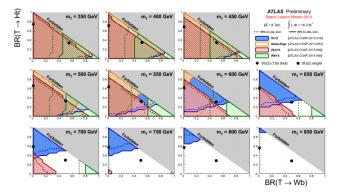


Figure: Present status (Lepton-Photon June 2013) of vector-like top searches with 14.3 fb⁻¹ of 8 TeV data with the ATLAS detector.

ATLAS: lower limits $m_{t'} \sim 750$ GeV as well.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Mass Bounds from LHC Direct Searches: ATLAS b'

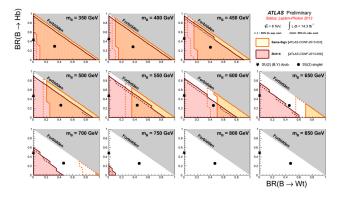


Figure: Present status (Lepton-Photon June 2013) of vector-like bottom searches with 14.3 fb⁻¹ of 8 TeV data with the ATLAS detector.

Mass Lagrangian

With the mass matrices defined, the relevant mass gauge eigenstate Lagrangian is:

$$-\mathcal{L}_m = (f_L^{uT} m_f^u f_R^u + f_L^{dT} m_f^d f_R^d + \mathbf{h.c}) + \tilde{f}^{u\dagger} (M_s^u)^2 \tilde{f}^u + \tilde{f}^{d\dagger} (M_s^d)^2 \tilde{f}^d$$

where the gauge basis in family space is

$$f_L^u = (u_3, u_4, \bar{u}_4)^T$$

$$f_R^u = (u_3^c, u_4^c, \bar{u}_4^c)^T$$

$$f_L^d = (d_3, d_4)^T$$

$$f_R^d = (d_3^c, \bar{d}_4^c)^T$$

$$\tilde{f}^u = (\tilde{u}_3, \tilde{u}_4, \tilde{u}_4, \tilde{u}_3^c, \tilde{u}_4^c, \tilde{u}_4^c)^T$$

$$\tilde{f}^d = (\tilde{d}_3, \tilde{d}_4, \tilde{d}_3^c, \tilde{d}_4^c)^T$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We need to Diagonalize \mathcal{L}_m !

(日) (同) (三) (三) (三) (○) (○)

Diagonalizing the Fermion Mass Matrices

Physical masses obtained by bi-diagonalizing the mass matrices using singular value decomposition:

$$\begin{split} m_D^u &= V_L^{u\dagger} m_f^u V_R^u \\ m_D^d &= V_L^{d\dagger} m_f^d V_R^d \end{split}$$

- $\bullet \ V_L^{u,d}$ and $V_R^{u,d}$ are unitary
- $m_D^{u,d}$ are diagonal
- Singular values of m_f^u (m_f^d) give the physical masses of $t_{,(b),t_{1,2}'}(b')$
- \bullet mass basis is given by $\hat{f}^{u,d}_{L,R} = V^{u,d\dagger}_{L,R} f^{u,d}_{L,R}$

Diagonalizing the Scalar Mass Squared Matrices

Physical masses obtained by diagonalizing the mass squared matrices:

$$\tilde{M}_D^u = W^{u\dagger} m_f^u W^u$$
$$\tilde{M}_D^d = W^{d\dagger} m_f^d W^d$$

- $W^{u,d}$ are unitary
- $\bullet \ \tilde{M}_D^{u,d} \text{ are diagonal} \\$
- Positive square roots of $(\tilde{M}_D^u)^2$ (and $(\tilde{M}_D^d)^2$) give the physical masses of $\tilde{t}_{1,2}$, $\tilde{t}'_{1,2,3,4}$, $(\tilde{b}_{1,2}, \tilde{b}'_{1,2})$
- Mass basis is given by $\hat{\widetilde{f}}^{u,d} = W^{u,d\dagger} \widetilde{f}^{u,d}$

Experimental Constraints

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Interaction Lagrangian

CKM like matrices in every interaction vertex: FCNC's.

$\mathbf{V}_{\mu}\mathbf{\hat{f}}_{lpha}^{\mathbf{a}\dagger}\mathbf{K}_{lpha}^{\mathbf{ab}}ar{\sigma}^{\mu}\mathbf{\hat{f}}_{lpha}^{\mathbf{b}}$	$\mathbf{K}^{\mathbf{ab}}_{lpha}$		$\mathbf{V}_{\mu}\mathbf{\hat{ ilde{f}}}^{\mathbf{a}\dagger}\mathbf{ ilde{K}}^{\mathbf{ab}}_{lpha}\overleftrightarrow{\partial}^{\mu}\mathbf{ ilde{f}}^{\mathbf{b}}$	$\mathbf{V}_{\mu}\mathbf{V}^{\mu}\mathbf{\hat{ ilde{f}}}^{\mathbf{a}\dagger}\mathbf{ ilde{K}}^{\mathbf{ab}}_{lpha}\mathbf{\hat{ ilde{f}}}^{\mathbf{b}}$	$ ilde{\mathbf{K}}^{\mathbf{ab}}_{lpha}$
$\frac{\mathbf{v}_{\mu}\mathbf{I}_{\alpha}\mathbf{K}_{\alpha}\sigma^{\mu}\mathbf{I}_{\alpha}}{W_{\mu}^{+}\hat{f}_{L}^{u\dagger}K_{L}^{ud}\bar{\sigma}^{\mu}\hat{f}_{L}^{d}}$	\mathbf{K}_{α} $V_L^{u\dagger} D_L^{ud} V_L^d$	ſ	$W^+_{\mu} \hat{\tilde{f}}^{u\dagger} \tilde{K}^{ud}_L \overleftrightarrow{\partial}^{\mu} \hat{\tilde{f}}^d$	$W^+_{\mu}W^{\mu+}\hat{f}^{u\dagger}\tilde{K}^{ud}_L\hat{f}^d$	$W^{u\dagger} \tilde{D}_L^{ud} W^d$
$\frac{W_{\mu} J_{L} K_{L}^{-} \sigma^{\mu} J_{L}^{-}}{W_{\mu}^{+} \hat{f}_{R}^{d\dagger} K_{R}^{\bar{u}d\dagger} \bar{\sigma}^{\mu} \hat{f}_{R}^{u}}$	$\frac{V_L D_L^{-} V_L}{V_R^{u\dagger} D_R^{\bar{u}\bar{d}} V_R^d}$	ľ	$\frac{W^{+}_{\mu}}{W^{+}_{\mu}\hat{f}^{d\dagger}}\hat{K}^{\bar{u}\bar{d}\dagger}_{R}\overleftrightarrow{\partial}^{\mu}\hat{f}^{u}$	$W^{+}_{\mu}W^{\mu+}\hat{f}^{d\dagger}\tilde{K}^{\bar{u}\bar{d}\dagger}_{R}\hat{f}^{u}$	$W^{u\dagger}\tilde{D}_{R}^{\bar{u}\bar{d}}W^{d}$
$\frac{W_{\mu} J_R K_R \sigma}{Z^0_{\mu} \hat{f}^{u\dagger}_L K^{uu}_L \bar{\sigma}^{\mu} \hat{f}^u_L}$	$\frac{V_R D_R V_R}{V_L^{u\dagger} D_L^{uu} V_L^u}$		$Z^0_{\mu}\hat{\tilde{f}}^{u\dagger}\tilde{K}^{uu}_L\overleftrightarrow{\partial}^{\mu}\hat{\tilde{f}}^u$	$Z^0_\mu Z^{\mu 0} \hat{\tilde{f}}^{u\dagger} \tilde{K}^{uu}_L \hat{\tilde{f}}^u$	$W^{u\dagger} \tilde{D}_L^{uu} W^u$
$\frac{\mu J_L}{Z^0_\mu \hat{f}^{u\dagger}_L K^{\bar{u}\bar{u}}_L \bar{\sigma}^\mu \hat{f}^u_L}$	$V_L^{u\dagger}S_L^{\bar{u}\bar{u}}V_L^u$		$Z^0_\mu \hat{\tilde{f}}^{u\dagger} \tilde{K}^{\bar{u}\bar{u}}_L \overleftrightarrow{\partial}^\mu \hat{\tilde{f}}^u$	$Z^0_\mu Z^{\mu 0} \hat{\tilde{f}}^{u\dagger} \tilde{K}^{\bar{u}\bar{u}}_L \hat{\tilde{f}}^u$	$W^{u\dagger}\tilde{S}_{L}^{\bar{u}\bar{u}}W^{u}$
$Z^0_\mu \hat{f}^{u\dagger}_R K^{\bar{u}\bar{u}}_R \bar{\sigma}^\mu \hat{f}^u_R$	$V_R^{u\dagger} D_R^{\bar{u}\bar{u}} V_R^u$		$Z^0_\mu \hat{\tilde{f}}^{u\dagger} \tilde{K}^{\bar{u}\bar{u}}_R \overleftrightarrow{\partial}^\mu \hat{\tilde{f}}^u$	$Z^0_\mu Z^{\mu 0} \hat{\tilde{f}}^{u\dagger} \tilde{K}^{\bar{u}\bar{u}}_R \hat{\tilde{f}}^u$	$W^{u\dagger} \tilde{D}_R^{\bar{u}\bar{u}} W^u$
$Z^0_\mu \hat{f}^{u\dagger}_R K^{uu}_R \bar{\sigma}^\mu \hat{f}^u_R$	$V_R^{u\dagger}S_R^{uu}V_R^u$		$Z^0_\mu \hat{\tilde{f}}^{u\dagger} \tilde{K}^{uu}_R \overleftrightarrow{\partial}^\mu \hat{\tilde{f}}^u$	$Z^0_\mu Z^{\mu 0} \hat{\tilde{f}}^{u\dagger} \tilde{K}^{uu}_R \hat{\tilde{f}}^u$	$W^{u\dagger}\tilde{S}^{uu}_RW^u$
$Z^0_\mu \hat{f}^{d\dagger}_L K^{dd}_L \bar{\sigma}^\mu \hat{f}^d_L$	$V_L^{d\dagger} D_L^{dd} V_L^d$		$Z^0_\mu \hat{\tilde{f}}^{d\dagger} \tilde{K}^{dd}_L \overleftrightarrow{\partial}^\mu \hat{\tilde{f}}^d$	$Z^0_\mu Z^{\mu 0} \hat{\tilde{f}}^{d\dagger} \tilde{K}^{dd}_L \hat{\tilde{f}}^d$	$W^{d\dagger} \tilde{D}_L^{dd} W^d$
$\frac{Z^0_{\mu}\hat{f}^{d\dagger}_R K^{d\bar{d}}_R \bar{\sigma}^{\mu}\hat{f}^d_R}{Z^0 \hat{f}^{d\dagger}_R K^{d\bar{d}}_R \bar{\sigma}^{\mu} \hat{f}^d_R}$	$V_R^{d\dagger} D_R^{d\bar{d}} V_R^d$ $V_R^{d\bar{\dagger}} C^{d\bar{d}} V_R^d$		$Z^0_{\mu} \hat{\tilde{f}}^{d\dagger} \tilde{K}^{\bar{d}\bar{d}}_R \overleftrightarrow{\partial}^{\mu} \hat{\tilde{f}}^{d}$	$Z^0_\mu Z^{\mu 0} \hat{\tilde{f}}^{d\dagger} \tilde{K}^{d\bar{d}}_R \hat{\tilde{f}}^d$	$W^{d\dagger} \tilde{D}_{R}^{\bar{d}\bar{d}} W^{d}$
$Z^0_\mu \hat{f}^{d\dagger}_R K^{dd}_R \bar{\sigma}^\mu \hat{f}^d_R$	$V_R^{d\dagger} S_R^{dd} V_R^d$	ľ	$Z^0_\mu \hat{\tilde{f}}^{d\dagger} \tilde{K}^{dd}_B \overleftrightarrow{\partial}^\mu \hat{\tilde{f}}^d$	$Z^0_\mu Z^{\mu 0} \hat{\tilde{f}}^{d\dagger} \tilde{K}^{dd}_B \hat{\tilde{f}}^d$	$W^{d\dagger} \tilde{S}^{dd}_{R} W^{d}$

▶ ▲ 臣 ▶ 臣 • • • • • •

Coupling Matrices

Coupling Matrix	Explicit Form	Coupling Matrix	Explicit Form
G_{ud}^W	$\frac{g}{\sqrt{2}}K_L^{ud}$	$G^W_{\bar{u}\bar{d}}$	$-\frac{g}{\sqrt{2}}K_R^{\bar{u}\bar{d}}$
$G_{u_L}^Z$	$g^{Z}_{(\frac{1}{2},\frac{2}{3})}K^{uu}_{L} + g^{Z}_{(0,\frac{2}{3})}K^{\bar{u}\bar{u}}_{L}$	$G^Z_{u_R}$	$g^{Z}_{(0,-\frac{2}{3})}K^{uu}_{R} + g^{Z}_{(-\frac{1}{2},-\frac{2}{3})}K^{\bar{u}\bar{u}}_{R}$
$G_{d_L}^Z$	$g^{Z}_{(-\frac{1}{2},-\frac{1}{3})}K^{dd}_{L}$	$G^Z_{d_R}$	$g^{Z}_{(0,\frac{1}{3})}K^{dd}_{R} + g^{Z}_{(\frac{1}{2},\frac{1}{3})}K^{dd}_{R}$
$G^A_{u_L}$	$g^{A}_{\frac{2}{3}}[K^{uu}_{L} + K^{\bar{u}\bar{u}}_{L}]$	$G^A_{u_R}$	$g^A_{\frac{2}{3}}[K^{uu}_R + K^{\bar{u}\bar{u}}_R]$
$G^A_{d_L}$	$g^A_{-\frac{1}{3}}K^{dd}_L$	$G^A_{d_R}$	$g^A_{-\frac{1}{3}}K^{dd}_R$

TABLE VI: The coupling matrices at the triple vertex between quarks and gauge bosons. We define $g^{Z}_{(T^3,Q)} = \frac{g_{cob}h_V}{\cos h_V}(T^3 - Q\sin^2 \theta_W)$, $g^A_Q = Qe$

Coupling Matrix	Explicit Form
\tilde{G}_{ud}^W	$\frac{g}{\sqrt{2}}\tilde{K}_{L}^{ud}$
\tilde{G}_u^Z	$g^{Z}_{(\frac{1}{2},\frac{2}{3})}\tilde{K}^{uu}_{L} + g^{Z}_{(0,\frac{2}{3})}\tilde{K}^{\bar{u}\bar{u}}_{L} + g^{Z}_{(0,-\frac{2}{3})}\tilde{K}^{uu}_{R} + g^{Z}_{(-\frac{1}{2},-\frac{2}{3})}\tilde{K}^{\bar{u}\bar{u}}_{R}$
\tilde{G}_{u}^{A}	$g_{\frac{2}{3}}^{A} \tilde{K}_{L}^{uu} + g_{\frac{2}{3}}^{A} \tilde{K}_{L}^{\bar{u}\bar{u}} + g_{\frac{-2}{3}}^{A} \tilde{K}_{R}^{uu} + g_{\frac{-2}{3}}^{A} \tilde{K}_{R}^{\bar{u}\bar{u}}$
$\tilde{G}^W_{\bar{u}\bar{d}}$	$-\frac{g}{\sqrt{2}} ilde{K}_R^{ar{u}ar{d}}$
\tilde{G}_d^Z	$g^{Z}_{(-\frac{1}{2},-\frac{1}{3})}\tilde{K}^{dd}_{L} + g^{Z}_{(0,\frac{1}{3})}\tilde{K}^{dd}_{R} + g^{Z}_{(\frac{1}{2},\frac{1}{3})}\tilde{K}^{\bar{d}\bar{d}}_{R}$
\tilde{G}_d^A	$g^A_{-\frac{1}{3}}\tilde{K}^{dd}_L + g^A_{\frac{1}{3}}\tilde{K}^{dd}_R + g^A_{\frac{1}{3}}\tilde{K}^{d\bar{d}}_R$

TABLE VII: The coupling matrices at the triple vertex between squarks and gauge bosons.

We define
$$g_{(T^3,Q)}^Z = \frac{g}{\cos \theta_W} (T^3 - Q \sin^2 \theta_W), \ g_Q^A = Qe$$

Perturbativity of Gauge Couplings

- Perturbative gauge coupling unification $(g_{\text{unif}} \leq 3)$ is verified at 1-loop for MSSM + $\mathbf{10} + \mathbf{\overline{10}} + \mathbf{5} + \mathbf{\overline{5}}$.
- The 1-loop Beta function is:

$$16\pi^2 \frac{dg_i}{dt} = -b_i g_i^3, \quad t = \ln Q$$

The Beta function coefficients are:

$$b1 = \frac{3(11)}{5} + n_{10}b_{10} + n_5b_5$$

$$b2 = 1 + n_{10}b_{10} + n_5b_5$$

$$b3 = -3 + n_{10}b_{10} + n_5b_5$$

with $b_{10} = 3$, $b_5 = 1$ from group theory. The 5's push up Λ_L since they make g_i stronger in the UV, slowing the growth of y_{ij} 's

・ロット 4回ッ 4回ッ 4回ッ 4日ッ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Top Yukawa Landau Poles: 2-loop Beta function

The 2-loop Beta function of the top Yukawa is (Martin and Vaughn):

$$\beta_{Y_u}(t) = \frac{1}{16\pi^2} [(3\text{Tr}[Y_u(t).Y_u^{\dagger}(t)]Y_u(t) + 3Y_u(t)Y_u^{\dagger}(t)Y_u(t) + Y_u(t)Y_d^{\dagger}(t)Y_d(t)) - (\frac{16}{3}g_3(t)^2 + 3g_2(t)^2 + \frac{13}{15}g_1(t)^2)Y_u(t)]$$

Here, Y_u is the up-type Yukawa coupling matrix containing y_{33} , y_{34} , y_{43} and y_{44} .

The top and Higgs sector in the MSSM

• The MSSM Superpotential contains

$$W_{MSSM} \subset y_{33}^u Q_3 H_u U_3^c + \mu H_u H_d$$

• The soft Lagrangian contains

$$\begin{array}{lcl} -L_{Soft}^{MSSM} & \subset & (A_{33}^u \tilde{Q}_3 H_u \tilde{U}_3^c + {\rm c.c}) \\ & + & m_{Q_3}^2 \tilde{Q}_3^\dagger \tilde{Q}_3 + m_{U_3^c}^2 \tilde{U}_3^c \tilde{U}_3^{c\dagger} + m_{D_3^c}^2 \tilde{D}_3^c \tilde{D}_3^{c\dagger} \\ & + & m_{H_u}^2 H_u^* H_u + m_{H_d}^2 H_d^* H_d + (B_\mu H_u H_d + {\rm c.c}) \end{array}$$

• The classical scalar potential for the neutral Higgs is:

$$V = (|\mu|^2 + m_{H_u}^2)|H_u^0|^2 + (|\mu|^2 + m_{H_d}^2)|H_d^0|^2$$

- $(B_\mu H_u^0 H_d^0 + \text{c.c}) + \frac{1}{8}(g^2 + g'^2)(|H_u^0|^2 - |H_d^0|^2)^2$