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A Tale of Two Sectors

Studying minimal dark 
sector is good for 
relating different DM 
search frontiers.
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Collider Signatures of a  
Non-Minimal Dark Sector

• Assume the dark sector particles are neutral under 
SM charges. 

• Lightest dark fermion is stable if B and L are 
conserved. 

• Dark scalar can mix with the Higgs. 
!

• Dark vector boson can mix with the SM vector 
bosons.
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A Non-Minimal Dark Sector 
at the LHC

SM

Dark sector

• The signal we consider is 
a lepton pair resonance+ 
MET. 

• Z’ boost determines the 
MET of the system. 

• For highly boosted Z’, the 
SM background is 
practically zero.

Z 0 + ��

�  Z 0 · · ·

Kinetic mixing



Other Proposed LHC Searches 
for Kinetically Mixed Z’

• Drell-Yan productions of Z’. 

• Higgs decays to Z’+X (e.g. Davoudiasl,et.al.: 
1203.2947, Davoudiasl,et.al.: 1401.2164). 

• Top decays to Z’+bW (Kong,et.al: 1401.5020). 

• None of these searches involve MET, which is the 
expected signature for dark sector production.



Simplified Models
• Darkstrahlung 

!

!

• Dark Higgs



Darkstrahlung
!

!

!

• The dark sector production Lagrangian is assumed to be 

!

• Z’ is usually highly boosted. 

• We assume that Z’ decays only to SM particles. 

• The total cross section is independent of the value of ε.
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(a) `+`�+ 6ET (b) 4 leptons final state (c) Monojet

FIG. 4: Feynman diagrams for `+`�+ 6ET , four leptons and monojet final states in the context of darkstrahlung
scenario.

A. Darkstrahlung

In the darkstrahlung scenario, Z 0 is radiated from the dark matter, as shown in Fig. 4a. The dark matter interaction
with SM particle is described by an EFT description

L � q̄�µ�5q �̄�µ�5�

⇤2
, (12)

where q is the SM quarks and � is the dark matter. This EFT captures scenarios where the dark sector particles are
produced with significant boost and radiates Z 0. The radiated Z 0 also receives some boost hence has some significant
pT .

Fig. 3 shows missing energy distributions for the signal and the W+W� background. The background 6ET peaks
around 40 GeV and becomes small for 6ET & mW . On the other hand, the signal 6ET distribution extends beyond
mW , since Z 0 is boosted. A cut on high enough MET reduces the background to be essentially zero while retaining a
high signal acceptance.

There are two other search channels that can also provide some additional bounds for this scenario. Monojet search,
where the jet is radiated from the incoming quarks (see Fig. 4c), can be a dominant bound when the coupling of dark
matter and Z 0 is reduced. The current bound on the direct production of the dark sector at the LHC comes from the
monojet + 6ET search [3]. This bound, when expressed in the terms of direct dark sector production, gives a pp ! ��
cross section of O(10 pb) at 8 TeV LHC. Since the dark sector is charged under U(1)D, the production cross section
of pp ! Z 0�� is in order of O(↵D/(2⇡)3 ⇥ 10 pb⇥ BRZ0!``) ⇠ O(↵D ⇥ 10 fb).

On the other hand, if the DM-Z 0 coupling is large, an additional Z 0s can be radiated from DM leading to a four
leptons in the final state, as shown in Fig. 4b. In this case, multi lepton search can give an additional bound. The
cross section for this channel can be approximated to be O(↵D/(2⇡)6 ⇥ 10 pb ⇥ BR2

Z0!``) ⇠ O(↵D ⇥ 0.01 fb). The
number of events for this channel 20 fb�1 of luminosity is ⇠ 0.1⇥↵D. Hence the multi lepton signature of this model
is not going to be observed at the 20 fb�1 LHC8, unless ↵D is beyond pertubativity. We will discuss the dependence
of the bounds on ↵D in more detail in the next section.

B. Cascade Decays

This scenario mimics the previous scenario except Z 0 comes from a decay of  ! �+Z 0, where  is another fermion
in the dark sector, as shown in Fig. 6. The Lagrangian in this scenario is given by

L � q̄�µ�5q  ̄�µ�5�

⇤2
+  ̄�µ�5�Z 0

µ + h.c.. (13)

If there is no flavor diagonal dark fermions coupling to quarks and Z 0, neither monojet nor multi leptons channels are
present. Hence only ``+ 6ET channel can provide some bounds for this scenario.

Like in the darkstrahlung case, both of � and  gets a significant amount of boost. The events tends to have large
missing energy as shown if Fig. 7. Hence a high 6ET cut does not reduce the signal acceptance significantly.



Bounds from  
Released LHC Data

• ATLAS electroweakino search (arXiv:1403.5294).
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Figure 3. Distributions of mℓℓ in the (a) SF and (b) DF samples that satisfy all the SR-WWa
selection criteria except for the one on mℓℓ, and of Emiss,rel

T in the (c) SF and (d) DF samples
that satisfy all the SR-WWa selection criteria except for the ones on mℓℓ and Emiss,rel

T . The lower
panel of each plot shows the ratio between data and the SM background prediction. The hashed
regions represent the sum in quadrature of systematic uncertainties and statistical uncertainties
arising from the numbers of MC events. Predicted signal distributions in a simplified model with
mχ̃±

1
= 100 GeV and mχ̃0

1
= 0 are superimposed. Red arrows indicate the SR-WWa selection

criteria. In (a), the region 81.2 < mℓℓ < 101.2 GeV is rejected by the Z boson veto.

10 Interpretation

Exclusion limits at 95% confidence-level are set on the slepton, chargino and neutralino

masses within the specific scenarios considered. The same CLs limit-setting procedure as in

section 9 is used, except that the SUSY signal is allowed to populate both the signal region

and the control regions as predicted by the simulation. Since the SRs are not mutually

exclusive, the SR with the best expected exclusion limit is chosen for each model point.

The results are displayed in figures 5 through 9. In each exclusion plot, the solid

(dashed) lines show observed (expected) exclusion contours, including all uncertainties

– 18 –
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ATLAS SR WWa CMS

pT,e > 10 GeV > 10 GeV

|⌘e| < 2.47 < 2.5

pT,µ > 10 GeV > 10 GeV

|⌘µ| < 2.4 < 2.4

pT,leading lepton

> 35 GeV > 20 GeV

pT,second lepton

> 20 GeV > 20 GeV

m``0 > 20 GeV > 12 GeV

|m``0 �mZ | > 10 GeV > 15 GeV for same flavor

pT,``0 > 80 GeV > 45 GeV

6ET rel > 80 GeV > 45 GeV

jet veto events with pTj > 20 GeV and |⌘j | < 2.4 events with pTj > 30 GeV and |⌘j | < 4.7

events with pTj > 30 GeV and 2.4 < |⌘j | < 4.5 events with pTj > 15 GeV, |⌘j | < 4.7 and ��``0,j > 1650

TABLE II: The cuts employed by ATLAS and CMS analysis. Both analysis require exactly two opposite sign
leptons. In the table above mZ is the mass of SM Z-boson and ��``0,j is the azimuthal angle between the jet

momentum and the dilepton system total momentum. 6ET rel is defined in the text.
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FIG. 9: 6ET rel and m`` distributions for WW background. For the 6ET rel distribution, the ATLAS SRWWa cuts are
applied except 6ET rel and m``. While for the m`` distributions, the cut on m`` is not applied.
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FIG. 10: pT,ll and mlldistributions for WW background for events that satisfy CMS cuts.
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An Optimized Search



An Optimized Search
• Smaller invariant mass window search.



An Optimized Search
• Smaller invariant mass window search.

• Larger MET cut.
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An Optimized Search
• Smaller invariant mass window search.

• Larger MET cut.
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An Optimized Search
• Smaller invariant mass window search.

• Larger MET cut.

• Cut on Δ R.
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An Optimized Search
• Smaller invariant mass window search.

• Larger MET cut.

• Cut on Δ R.
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Discovering the Dark Higgs

• The dark Higgs mixes with the SM Higgs; It is produced via standard 
Higgs production channels. 

• Small                    captures the case which Z’ is less boosted. 

• In this model we assume that Z’ can also decay to dark sector particles. 

• A possible signature of the Twin Higgs model.

m� � 2mZ0
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Optimized Search for Dark 
Higgs

• Search with a smaller mass window can still be 
applied. 

• For a large mass splitting, a high MET cut is more 
desirable. 

• In the case of small mass splitting, the MET cut has to 
be lowered to probe the less boosted Z’. 

• Solution: define two search regions. One with high MET 
cut (zero background), other with low MET cut pT > 50 
GeV.
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Conclusion
• Dilepton resonance + MET is a generic and powerful 

signature to probe a non minimal dark sector. 

• Using the data from the current ATLAS 
electroweakino search we can place a bound as 
tight as few fb. 

• An optimized search can improve the bounds by a 
factor of 3-4 times better in the case of 
Darkstrahlung, and some orders of magnitude better 
in the case of a dark Higgs.



Backup Slides



Other Final States for 
Darkstrahlung
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Decay Length
mZ ' = 20 GeV
mZ ' = 60 GeV
mZ ' = 100 GeV
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Bounds on Kinetic Mixing
4
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FIG. 2: 95% CL exclusions in the (mZ0 , ✏). The cyan region
is excluded for a “wide” Z0 and the purple region is for a
“narrow” Z0. The blue region shows the bounds placed by
CDF on direct production of Z0s. The inset illustrates the
constraints on mZ0 near the Z0 pole. The bound from the
(g�2)µ is shown in dark grey and the light grey, dashed region
shows the sensitivity from model dependent BaBar searches.

The model-independent limits on kinetic mixing were
computed in this letter and found to be ✏ <⇠ 0.03 for most
of the mass range studied, 1GeV < mZ0 < 200GeV. The
possible use of radiated return to place tighter constraints
on Z 0 was investigated at both LEP1 and LEP2 energies,
however this channel did not help place tighter bounds
on kinetic mixing. Even with the constraints found in
this letter, there still is a vast parameter space available
for a kinetically mixed vector boson to mediate interac-
tions between a dark sector and the SM. The current
program of searching for model dependent decay modes
at low energy experiments will augment these model in-
dependent limits for mZ0 <⇠ 10GeV. For higher energies,
only the LHC will provide additional information for
200GeV <⇠ mZ0 <⇠ 3TeV [16]. The relatively weak lim-
its for mZ0 >⇠ 10GeV motivates new high intensity e+e�

experiments to potentially discover new interactions of
this form.
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LHC Bounds on Z’
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Figure 1: 95% exclusion limits on the kinetic mixing parameter �Y from the ATLAS (dashed)
and CMS (solid) Z 0 searches. The thin lines correspond to the µ+µ� channel only, while the
thick lines result from a combination of the µ+µ� and e+e� channels.
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Figure 2: Combination of the new LHC limits with a range of other constraints on hidden
photons (see refs. [19,20] for details). The new “LHC” region is marked in orange and extends
the existing bounds to a previously uncovered range of high masses. Note that the limits are
with respect to the hypercharge mixing parameter �Y . For small hidden photon masses the
kinetic mixing parameter with the ordinary photon is related to �Y through � = cos(✓W )�Y .

2.2 Dimension 6 operators

Hidden photons can also couple to the SM via dimension 6 operators. A full set of such operators
has been collected in ref. [21]:

L
int

=
1

M2

F 0
µ⌫

✓
CuQL�µ⌫H̃uR + CdQL�µ⌫HdR + CeLL�µ⌫HeR + h.c.

◆
(2.6)
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J. Jaeckel, M. Jankowiak, M. Spannowsky: arXiv:1212.3620

Assume no Z’ decay to dark sector


