Light Hidden Sectors at Fixed-Target Experiments

arXiv:1402.4817
David Morrissey (TRIUMF)
Andrew Spray (Melbourne)
Outline

1. Introduction and Motivation
2. Theory: Model and Benchmarks
3. Fixed Target Limits
4. Conclusions
Introduction and Motivation
Hidden Sectors

- Heavy stuff harder to probe!
 Increase $m \Rightarrow$ See only larger g

- $g \sim O(1)$ implies NP is TeV-scale!
- e.g. NP has gauge couplings
 $g \ll O(1)$ lets NP be light!

- Hidden sector gauge-neutral
Heavy stuff harder to probe! Increase $m \Rightarrow$ See only larger g

- $g \sim O(1)$ implies NP is TeV-scale
- e.g. NP has gauge couplings
Heavy stuff harder to probe! Increase $m \Rightarrow$ See only larger g

$g \sim O(1)$ implies NP is TeV-scale
 e.g. NP has gauge couplings

$g \ll O(1)$ lets NP be light
 Hidden sector gauge-neutral
Thinking of New Light Stuff

- **μ Anomalous Magnetic Moment**
 \[
 \delta a_\mu \sim \frac{g_{NP}^2}{16\pi^2} \frac{m_\mu^2}{M_{NP}^2}
 \]
 \[
 \frac{g_{NP}}{10^{-3}} \sim \frac{M_{NP}}{\text{GeV}}
 \]

- **Hidden Valleys**

- **Dark Matter Anomalies**

- **Asymmetric Dark Matter**
Portals

- Three renormalisable couplings between SM and gauge-neutral operators

\[-\frac{1}{2} \varepsilon B^{\mu\nu} X_{\mu\nu} \]

\[-\frac{1}{2} \lambda (H^\dagger H)(\Phi^\dagger \Phi) \]

\[y \bar{L} H N \]

- **Vector Portal: \(\gamma \)**
 - Photon Massless
 - \(X \) Couples \(\propto \varepsilon e Q \)

- **Higgs Portal**
 - LHC Only
 - Easy(?) to produce

- **Neutrino Portal**
 - Neutrino Light
 - \(N \) Hard to detect
Portals

- Three renormalisable couplings between SM and gauge-neutral operators

- **Vector Portal: γ**
 - Massless
 - Couples $\propto \varepsilon e Q$
 - One-Loop generated $\rightarrow \varepsilon \sim 10^{-3}$

- **Higgs Portal**
 - LHC Only
 - Easy(?) to produce

- **Neutrino Portal**
 - Near-massless
 - Hard to produce
Many previous studies and limits!

GeV-scale relatively unconstrained
Assumptions!

- Existing (GeV-scale) searches assume either: [1311.0029]
 - $X \rightarrow l^+ l^-$
 - Beam dump limits at small ε and m
 - Motivated as minimal model
 - $X \rightarrow$ invisible
 - Weaker limits from neutrino expts
 - Motivated from dark matter
General Hidden Sectors

- Multiple possible vector decays:
 - Direct Decay to Visible Sector
 - Invisible Decay
 - Decay to SM via Hidden Scalars
 - Decay to SM via Hidden Fermions

Schuster et al, [0910.1602]
Can we construct a model with all these decay modes?
The Model
A Minimal Supersymmetric Hidden Sector

- We don’t need to build a model: already had one! [1112.2705]
- **Supersymmetric**: has both hidden scalars and fermions
- If add R-parity, lightest fermion is stable
- Minimal model with $U(1)_X$ gauge symmetry:
 - Vector field X^μ plus gaugino \tilde{X}
 - Two Higgses H, H' plus Higgsinos $\tilde{H}, \tilde{H'}$
 - Minimal anomaly-free content
A Minimal Supersymmetric Hidden Sector

- We don’t need to build a model: already had one!
- **Supersymmetric**: has both hidden scalars and fermions
- If add R-parity, lightest fermion is stable
- Minimal model after breaking \(U(1)_x \):
 - Massive vector field \(Z^x \)
 - Two real scalars \(h^{x}_{1,2} \) and one pseudoscalar \(A^x \)
 - Three Majorana fermions \(\chi^{x}_{1,2,3} \)
Model as Benchmark

- Model is:
 - Minimal;
 - Has all four simple decay modes;
 - Has more complex decay chains
- Can be studied on own merits
- OR as framework to examine general hidden sectors
Four Benchmark Slopes

- Slices of parameter space: fixed ratios of mass parameters

A: \(m_{Z^x} < m_{A^x}, \mu', M_x \)

B: \(M_x < m_{Z^x} < m_{A^x}, \mu' \)

C: \(m_{A^x} < m_{Z^x} < \mu', M_x \)

D: \(\mu' < m_{Z^x} < m_{A^x}, M_x \)
Pseudoscalar and Fermion Decays

- Signals: long-lived states
- Coupling suppression
 - (Case A)
- Stable fermion (all cases)
- Phase space suppression:
 - A^x (Case C)
 - χ (Case D)
Hidden Higgs Decays

- Lightest scalar:
 - No HS bosonic decays
 - HS fermion decays (Case D)
- Decays to SM:
 - Four-body
 (irrelevant, Batell et al. [0903.0363])
 - Vector loop
 - Higgs mass mixing
- **Always** long-lived: Cases A—C
Fixed Target Limits
Fixed Target Experiments

- The other part of the title
- Examples of the **Intensity Frontier**:
 - High luminosity
 - Probe small coupling to SM
 - Low/Controlled backgrounds
 - Searches restricted to low mass
- One of the standard tools/proposals to limit Hidden Sectors
Electron Experiments

- Z^x couples to EM current
- Production from e is obvious!
- Recasting old experiments has placed important limits
- Proposed new searches
 - BUT miss Cases C, D
- Small angle quasi-elastic scattering dominates
Electron Experiments

- Z^x couples to EM current
- Production from e is obvious!
- Recasting old experiments has placed important limits
- Proposed new searches
 - BUT miss Cases C, D
- Small angle quasi-elastic scattering dominates
Results

❖ **No** \(h^x \) limits in Case A or B

❖ Case C:
 ❖ Completely new \(h^x \) and \(A^x \) limits
 ❖ Exclude much of \(a_\mu \) region

❖ Case D:
 ❖ First limits on this decay type
 ❖ All from \(\chi^x_2 \) decays
Results

- No h^x limits in Case A or B

- **Case C:**
 - Completely new h^x and A^x limits
 - **Exclude** much of a_μ region

- **Case D:**
 - First limits on this decay type
 - All from χ^x_2 decays
Results

❖ No h^x limits in Case A or B

❖ Case C:
 ❖ Completely new h^x and A^x limits
 ❖ Exclude much of a_μ region

❖ Case D:
 ❖ First limits on this decay pattern
 ❖ All from χ^x_2 decays
Proton Experiments

- Benefit from luminosity
- Easy to compute (for me!)
- One previous study:
 - $Z^x \rightarrow$ scalars \rightarrow leptons
- No mass mixing
- Many prospective limits from neutrino expts
- Strong limits from h^x!
Proton Experiments

- Benefit from luminosity
- Easy to compute (for me!)
- One previous study:
 - $Z^x \rightarrow \text{scalars} \rightarrow \text{leptons}$
- No mass mixing
- Many prospective limits from neutrino expts
- Strong limits from h^x!
Proton Experiments

- Benefit from luminosity
- Easy to compute (for me!)
- One previous study:
 - $Z^x \rightarrow \text{scalars} \rightarrow \text{leptons}$
- No mass mixing
- Many prospective limits from neutrino expts
- **Strong** limits from h^x!

High Mass: Partonic Production

Low Mass: Meson Decays

Schuster et al, 0910, 1602
Limits from CHARM only new ones
Nearly exclude region that explains a_{μ}!
Benchmark B

- Limits from CHARM + LSND fully exclude a_μ-preferred region!
Benchmark C

- Upper/lower regions with/without A^x
- First limits in SUSY case
- Limits much expanded in non-SUSY case
- a_μ-preferred region excluded!
- If CMB/BBN limits included, exclude $m_{Z^x} < 1$ GeV (except near μ threshold)
First limits on this case

CMB/BBN limits at $\varepsilon < 10^{-8}$

a_μ-preferred region NOT excluded! (h^x decays invisibly) But probed by JLab & INGRID
Conclusions

- Hidden Sectors coupling through kinetic mixing can have richer phenomenology than usually considered.
- Have discussed a simple model that illustrates this.
- Limits on Z^x decaying to scalars/fermions with visible decays much expanded/completely new.
- Difficult to explain a_μ with hidden vector if it is higgsed, and the Higgs decays visibly.
Back-Up Slides
Parameter Space

- Model has seven parameters (over MSSM):
 - Supersymmetric:
 - Gauge coupling g_x
 - Kinetic Mixing ϵ
 \[\mathcal{L} \supset \frac{1}{2} \epsilon X^{\mu\nu} F_{\mu\nu} \]
 - Higgsino Mass μ'
 - SUSY-breaking:
 - Vector mass m_{Zx}
 - Pseudoscalar mass m_{Ax}
 - Ratio of Higgs vevs $\tan \zeta$
 - Gaugino mass M_x

- Hidden Sector masses ϵ-suppressed if only feel SUSY breaking through kinetic mixing.
Structure of Hidden Sector

- Hidden sector very similar to neutral sector of MSSM

\[m_{Z^x} \leftrightarrow m_Z \quad m_{A^x} \leftrightarrow m_A \quad M_x \leftrightarrow M_B \quad \mu' \leftrightarrow \mu \quad \tan \zeta \leftrightarrow \tan \beta \]

- Fermion sector: as MSSM neutralinos, without \(\tilde{W} \)

\[\tilde{X} \leftrightarrow \tilde{B} \quad \tilde{H} \leftrightarrow \tilde{H}_u \quad \tilde{H}' \leftrightarrow \tilde{H}_d \]

- Scalar sector: as MSSM neutral Higgses

\[H \leftrightarrow H_u^0 \quad H' \leftrightarrow H_d^0 \]

- At tree level, \(m_{h^x} < m_{Z^x} \)
Benchmark Slope A: $Z^x \rightarrow SM$

- Vector has no hidden decays
- Must decay to SM particles
- Generically true when
 \[m_{Z^x} < m_{A^x}, \mu', M_x \]
- Can still produce HS through off-shell vector

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>2.0</td>
</tr>
<tr>
<td>M</td>
<td>3.0</td>
</tr>
<tr>
<td>μ'</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Benchmark Slope B: $Z^x \rightarrow \text{Inv}$

- Vector has one hidden decay:
 - To lightest (stable) fermion
 - Generically true when
 $$M_x < m_{Z^x} < m_{A^x}, \mu'$$
 - Can still get visible HS signals through off-shell vector

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>1.5</td>
</tr>
<tr>
<td>M</td>
<td>1.0</td>
</tr>
<tr>
<td>μ'</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Benchmark Slope C: \(Z^x \rightarrow \text{Scalars} \)

- Vector decays to hidden scalars
- Scalars must decay to SM!
- Generically true when

\[
m_{A^x} < m_{Z^x} < \mu', M_x
\]
Vector decays to HS fermions

\(\chi^x_2 \) must decay to SM!

\[\text{BR}(Z^x \rightarrow \chi^x_2) = 94\% \]

Generically true when

\[\mu' < m_{Z^x} < m_{A^x}, M_x \]
Non-Beam Dump Limits
Model-Independent Limits

- Electroweak Precision: m_Z
- Kinetic Mixing Modifies Z
 - $\varepsilon \approx 0.026$ [Hook et al, 1006.0973]
- Anomalous Magnetic Moments
- Intro QFT Calculation
- Limits from a_e and a_μ
- Possible explanation of δa_μ
- Details: Pospelov, [0811.1030]
Meson Decays: Slopes A and B

- BaBar $\Upsilon (3s, 2s) \rightarrow \gamma a^0 \rightarrow \gamma \mu^+ \mu^-$
- KLOE $\varphi \rightarrow \eta Z^x \rightarrow \eta e^+ e^-$
- WASA $\pi^0 \rightarrow \gamma Z^x \rightarrow \gamma e^+ e^-$

- BaBar $\Upsilon (3s) \rightarrow \gamma a^0 \rightarrow \gamma + \text{inv}$
- E787, E949 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

![Graphs showing results of meson decays.](image)
Meson Search Topologies

- **Search Topologies:**
 - Visible decays: Total energy = E_{Par}
 - Invisible decays: MET + tag
 - If $Z^x \rightarrow \text{Hidden Sector}$, instead have:
 - Tag + *lepton pair* + MET
 - Tag + $l^+l^-l^+l^-l^+l^-$
 - These searches not done; no limits
Meson Decays C: $Z^x \rightarrow$ Scalars

- Cosmology limits: CMB/BBN (late h^x decays)
- Limits from BaBar $\Upsilon (3s) \rightarrow \gamma + Z^x \rightarrow \gamma + h^x + A^x \rightarrow \gamma + \text{inv}$
- Not shown: E787, E949 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ limits for $\varepsilon \gtrsim 0.01$
Meson Decays D: $Z^x \rightarrow$ Fermions

- Cosmology limits from χ^{x_2} decays
- BaBar limits again from invisible search

\[\Upsilon (3s) \rightarrow \gamma + Z^x \rightarrow \gamma + \chi^{x_1} + \chi^{x_{1,2}} \rightarrow \gamma + \text{inv} \]
Experimental Details

- Previous searches:
 - All somewhat relevant
 - Thresholds important

- Current/Future searches
 - Many impose cut: \(E(e^+) + E(e^-) = E_{\text{beam}} \)
 - Insensitive to \(h^x, A^x, \chi^x \) decays

- MAMI
- APEX
- HPS
- CERN SPS (Visible)
- DarkLight

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Target</th>
<th>(E_0)</th>
<th>(N_e)</th>
<th>(L_{ab})</th>
<th>(L_{dec})</th>
<th>(E_{\text{thr}})</th>
<th>(r_{\text{Acc}})</th>
<th>(N_{95%})</th>
</tr>
</thead>
<tbody>
<tr>
<td>E137</td>
<td>Al</td>
<td>20</td>
<td>(1.87 \times 10^{20})</td>
<td>179</td>
<td>204</td>
<td>2</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>E141</td>
<td>W</td>
<td>9</td>
<td>(2 \times 10^{15})</td>
<td>0.12</td>
<td>35</td>
<td>4.5</td>
<td>0.0375</td>
<td>3419</td>
</tr>
<tr>
<td>E774</td>
<td>W</td>
<td>275</td>
<td>(5.2 \times 10^{9})</td>
<td>0.3</td>
<td>2</td>
<td>27.5</td>
<td>0.1</td>
<td>18</td>
</tr>
<tr>
<td>KEK</td>
<td>W</td>
<td>2.5</td>
<td>(1.69 \times 10^{17})</td>
<td>2.4</td>
<td>2.2</td>
<td>0.1</td>
<td>0.047</td>
<td>3</td>
</tr>
<tr>
<td>Orsay</td>
<td>W</td>
<td>1.6</td>
<td>(2 \times 10^{16})</td>
<td>1</td>
<td>2</td>
<td>0.75</td>
<td>0.15</td>
<td>3</td>
</tr>
<tr>
<td>JLab</td>
<td>Al</td>
<td>12</td>
<td>(10^{20})</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Experiments

- Several past/current searches
- Visible: CHARM, MINOS, ν-Cal I, LSND
- Invisible (neutrino): MINOS, INGRID, LSND
- Inferior limits from NOMAD, PS-191, ND280, MiniBooNE
- Future limits from Project X, AFTER@LHC