PRODUCTION OF QUARKONIUM STATES AT THE ATLAS EXPERIMENT PHENO2014

Benjamin Weinert Indiana University (on behalf of the Atlas Collaboration)

INTEREST IN QUARKONIA PRODUCTION

- Quarkonia are a $q\bar{q}$ bound state.
- A lot to learn from Quarkonium production:
 - Dynamics of strong interaction, and hadron formation.
 - Presence of multiple energy scales (hard scale, soft scale, and ultra soft scale).
 - Higgs decays to quarkonia provide a unique probe to the Higgs Bosons charm couplings.
 - Ideal probe of beyond-the-standard-model (BSM) frameworks.
- Observed in the past large disagreements between experimental results and theoretical production models (Tevatron):
 - Color Singlet Model (CM), Color Octet Model (COM), Color Evaporation Model (CEM),...

RESULTS IN TALK

In this talk I will focus on the three most recent ATLAS Quarkonia results.

- Measurement of W + prompt J/ ψ production at $\sqrt{s} = 7$ TeV: arXiv:1401.2831 [hep-ex], accepted for publication in JHEP.
- Measurement of χ_{c1} and χ_{c2} production at $\sqrt{s} = 7$ TeV: arXiv:1404.7035 [hep-ex], submitted to JHEP.
- Cross-Section Measurement of $\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ at $\sqrt{s} = 7$ TeV: ATLAS-CONF-2013-094.

W + PROMPT J/ ψ PRODUCTION

- 4.5 fb⁻¹ of 2011 $\sqrt{s} = 7$ TeV ATLAS data, select $W \rightarrow \mu\nu$, $J/\psi \rightarrow \mu\mu$.
- Single high p_T muon trigger ($p_T > 18 \text{ GeV}$) with:
 - J/ψ : one muon with $p_T > 4$ GeV, $p_T > 3.5$ (2.5) GeV for $|\eta| < 1.3$ (> 1.3), and $|y_{J/\psi}| < 2.1$.
 - W Boson: $p_T > 25 \text{ GeV}$, $|\eta| < 2.4$, MET > 20 GeV, and $m_T(W) > 40 \text{ GeV}$.
- Expected Background:
 - Pileup (multiple pp collisions in a bunch crossing, estimated to be 1.8 ± 0.2 events).
 - W+b-quark.
 - Separated from prompt production with unbinned maximum likelihood fit.
 - W+b production in itself is of similar magnitude as that of the signal, this is the first such measurement.
 - Top pair production (predicted to be less than 0.28 events at 95% CL).
 - Z+jets (negligible after vetoing opposite charged muons with invariant mass within 10 GeV of Z mass).
 - Multijet production (found to be smaller than 0.31 events at a 95% CL after fitting $m_T(W)$).
- Corrected for experimental efficiency and detector acceptance.

ATLAS W + Prompt J/ ψ Candidate

EXTRACTING THE SIGNAL

• A Maximum Likelihood fit of the Di-muon invariant mass and J/ ψ pseudo-proper time are used to extract prompt J/ ψ events. Then m_T(W) is fit to separate the QCD multijet background. The background-only hypothesis is rejected at 5.1 σ .

Yields from two-dimensional fit			
Process	Barrel	Endcap	Total
Prompt J/ψ	$10.0^{+4.7}_{-4.0}$	$19.2^{+5.8}_{-5.1}$	29.2 ^{+7.5} _{-6.5} (*)
Non-prompt J/ψ	27.9 ^{+6.5} -5.8	$13.9^{+5.3}_{-4.5}$	$41.8^{+8.4}_{-7.3}$
Prompt background	20.4 ^{+5.9}	$18.8^{+6.3}_{-5.3}$	$39.2^{+8.6}_{-7.3}$
Non-prompt background	$19.8^{+5.8}_{-4.9}$	$19.2^{+6.1}_{-5.1}$	$39.0^{+8.4}_{-7.1}$
p-value	8.0×10^{-3}	1.4×10^{-6}	2.1×10^{-7}
Significance (σ)	2.4	4.7	5.1

W + PROMPT J/ ψ DPS DISTRIBUTION

р

DPS Pythia8: arXiv:0710.3820

PRODUCTION CROSS-SECTION FOR W+PROMPT J/ψ

- The differential cross-section ratio as a function of ${\rm p_{T,}}$ $dR_{J/\psi}^{Incl}/{\rm dp_{T.}}$
- A DPS estimate is shown and the data suggests DPS is a large fraction of the signal, $f_{DPS} \sim 37\%$.

LO: arXiv:1303.5327

NLO: arXiv:1012.3798

• NLO Color Octet contributions are an order of magnitude smaller than LO Color Singlet contributions.

- Color singlet dominance in contradiction to color octet enhancement in other quarkonium production processes. Breakdown of NRQCD universality? Modifications to DPS ansatz?
- Due to the large uncertainties SPS prediction are compatible with results at the 2σ level.

X_{c1} AND X_{c2} PRODUCTION

- Prompt J/ ψ can be produced directly, or from decays of other states such as χ_c .
- 4.5 fb⁻¹ of 2011 $\sqrt{s} = 7$ TeV ATLAS data, select $\chi_c \rightarrow J/\psi\gamma, J/\psi \rightarrow \mu\mu$.
- Di-muon trigger with $p_T > 4$ GeV.
 - J/ψ : $p_T(\mu) > 4$ GeV, $|\eta| < 2.3$.
 - γ : opp. charged tracks with $p_T > 400 \text{ MeV}, |\eta| < 2.3. p_T(\gamma) > 4 \text{ GeV}, |\eta(\gamma)| < 2.3.$
- An unbinned simultaneous Maximum Likelihood fit of $\Delta m=m(\mu^+\mu^-\gamma)-m(\mu^+\mu^-)$ and the pseudo-proper lifetime.
 - Corrected for experimental efficiency and detector acceptance.

PRODUCTION CROSS-SECTION FOR $\chi_c VS$. $P_T^{J/\Psi}$

First absolute measurement of differential cross-section of prompt χ_{c1} and χ_{c2} .

- Compared with NLO NRQCD (from the Tevatron), k_T factorization, and LO CSM.
- NRQCD is in good agreement. The k_T factorization approach predicts an excess and LO CSM underestimates the results.

First absolute measurement of differential cross-section of non-prompt χ_{c1} and χ_{c2} .

- The results are compared to FONLL predictions for b-hadron production
- Measurements found to be in good agreement.

NRQCD:arXiv:1002.3987, arXiv:1212.5293, arXiv:1009.3655 LO CSM: http://superchic.hepforge.org/chigen.html FONLL: arXiv:1205.6344, hep-ph/9803400

χ_{c1} AND χ_{c2} PRODUCTION RATES

(Left)Fraction of prompt J/ψ produced from χ_c decay.

- Results compared to LHCb data and NLO NRQCD, and are in good agreement and are between 20-30%.
- LHCb: arXiv:1204.1462

(Right)Ratio of prompt χ_{c2} relative to χ_{c1} as a function of $p_T^{J/\psi}$.

- Compared with CMS data and NLO NRQCD predictions. Good agreement especially at low $p_T^{J/\psi}$, but hints of overestimate at high p_T.
- The LO CSM consistently underestimates the measurements.
- CMS: arXiv:1210.0875
- (Bottom)Ratio of non-prompt χ_{c2} relative to χ_{c1} as a
 - Compared with one data point from CDF. The results are
- The Branching Fraction $B(B^{\pm} \rightarrow \chi_{c1}K^{\pm})$ is measured.

 $B(B^{\pm} \rightarrow \chi_{c1}K^{\pm}) = (4.9 \pm 0.9 \text{ (stat.)} \pm 0.6 \text{ (syst.)}) \times 10^{-4}.$

$\psi(2S) \rightarrow J/\psi(\rightarrow \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}) \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -}$

- $\psi(2S)$ has no significant feed down, higher charmonium states decay predominately to $D\overline{D}$. Expands on previous measurements to the range |y| < 2.0 and $10 < p_T < 100$ GeV.
- 2.1 fb⁻¹ of 2011 $\sqrt{s} = 7$ TeV ATLAS data.

- Di-muon trigger with $p_T > 4$ GeV.
 - J/ψ : $p_T(\mu) > 4 \text{ GeV}, |\eta| < 2.3. p_T(J/\psi) > 8 \text{ GeV}, |y(J/\psi)| < 2.0.$
 - π : opp. charged tracks with $p_T > 0.5$ GeV, $|\eta| < 2.5$, and assigning pion mass hypothesis. A four-particle vertex fit is performed with $M(\mu^+\mu^-)$ constrained to the pdg value for the J/ ψ (3096.916 MeV).
- An unbinned simultaneous Maximum Likelihood fit of the J/ $\psi \pi \pi$ mass and the pseudo-proper lifetime are in bins of p_T .
 - Split into three rapidity bins: |y|<0.75, 0.75<|y|<1.5, 1.5<|y|<2.0.
 - Corrected for trigger efficiency, muon reconstruction, pion reconstruction, and detector acceptance.

PRODUCTION CROSS-SECTION FOR $\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$

[nb/GeV]

(2S)/dp

d^kg′

π⁺π').

Br(ψ(

- (Left)Prompt and (Right) nonprompt ψ (2S) cross-section as a function of p_{T} .
 - Compared to earlier LHCb and CMS results in similar rapidity ranges. The common p_T range values are in good agreement.
 - CMS: arXiv:1111.1557
 - LHCb: arXiv:1204.1258

- LO predictions are in agreement with large uncertainties.
- NLO are in good agreement until high p_T, where it overestimates and predicts a harder spectrum.
- k_T factorization underestimates the data and has a p_T dependent shape.
- (Right) Non-Prompt ψ (2S) crosssection compared with FONLL and fixed-order NLO predictions.
 - FONLL shows better agreement than NLO, but both overestimate at high p_T.

CSM: Phys.Rev. D18 (1978) 1501, NRQCD: arXiv:1009.3655 k_T: arXiv:1108.2856 FONLL: arXiv:hep-ph/0102134

SUMMARY

- W + prompt J/ψ production (arXiv:1401.2831 [hep-ex]):
 - Measured for the first time. Background-only hypothesis rejection at 5.1σ .
 - NLO CO contributions are nearly an order of magnitude less than LO CS contributions.
 - Novel observables with which to test QCD, including DPS contributions, as well as a source of rare/BSM physics.
- χ_{c1} and χ_{c2} production (**arXiv:1404.7035 [hep-ex]**):
 - χ_c absolute cross-section is measured for the first time.
 - Prompt production found to be in agreement with NRQCD predictions. kT factorisation approach predicts an excess.
 - Non-prompt production in agreement with FONLL at low $p_{T}\!\!,$ with slight overestimates developing toward high $p_{T}\!\!.$
- $\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ (ATLAS-CONF-2013-094):
 - The cross-section for $\psi(2S) \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$ is consistent with previous measurements.
 - For prompt production, NLO NRQCD describes the data well except at high p_T where it overestimates. k_T factorization noticeably undershoots the data, this is correlated with the overestimate in χ_c and can be used to help tune the model.
 - For non-prompt production, both NLO and FONLL describe the data well over a wide range of p_T , but have a significant overestimation at high p_T . Possible cause is sharing of energy with $B \rightarrow \psi(2S)+X$? The same overestimate in FONLL is seen in χ_c .

BACKUP SLIDES

DOUBLE PARTON SCATTERING: FEATURES

- Double Parton Scattering (DPS) requires large c.m. energies and low values of incoming fractional momenta (x_F) . This is possible to achieve at a non-negligible rate at the LHC.
- Because it is dependent on the transverse distance between interactions regions, the DPS cross section decreases quickly as a function of transverse energy.
- Assuming that the two processes (σ_A, σ_B) are independent of each other, DPS cross section can be written as: $\sigma_{DPS}^{(A,B)} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{Eff}}$.
 - m = 1 if A and B are distinguishable and m = 2 if they are indistinguishable
 - $\sigma_{Eff} = \left[\int \left[\int_{f(b_1)} f(\mathbf{b}_1 \mathbf{b}) d^2 b_1 \right]^2 d^2 b \right]^{-1}$ where f(b) parton density in the transverse plane and is assumed to be a universal function, same for both protons.
 - $\frac{\sigma_B}{\sigma_{Eff}}$ is the probability for scattering B to occur given scattering A has already occurred.
 - σ_{Eff} measures the size in impact parameter space of the incident hadron's partonic core.
- $\sigma_{Eff} \sim \frac{1}{4} \sigma_{Inel.}$
 - If the effective cross section was equal to the inelastic cross section, it would imply uncorrelated scatterings.
 - This result indicates a correlation ("clumpiness") in the hadron structure.
- A constant value of σ_{Eff} has been able to describe results in different kinematical regions. CDF has also tested the dependence of σ_{Eff} on x_F and had compatible results with being independent of x_F .

PRODUCTION CROSS-SECTION FOR χ_c VS. $P_T^{\chi_c}$

The differential crosssection of prompt χ_{c1} and χ_{c2} as a function of the χ_c transverse momentum.

The results are compared with NLO NRQCD (from the Tevatron), $k_{\rm T}$ factorization, and LO CSM.

NRQCD is in good agreement with the results. The k_T factorization approach predicts an excess and LO CSM underestimates the results.

- The differential cross-section of nonprompt χ_{c1} and χ_{c2} as a function of the J/ ψ transverse momentum.
- The results are compared to FONLL predictions for b-hadron production.
- Measurements found to be in good agreement but discrepancies emerge toward higher p_{T} .

NON-PROMPT FRACTION IN X_{c1}AND X_{c2} PRODUCTION

The fraction of non-prompt χ_{c1} and χ_{c2} as a function of $p_T^{\chi_c}$. The non-prompt fraction increases with p_T as seen with J/ψ and $\psi(2s)$, but is dominated by prompt production unlike the other two systems.

BRANCHING FRACTION $B(B^{\pm} \rightarrow \chi_{c1}K^{\pm})$

• $B(B^{\pm} \rightarrow \chi_{c1}K^{\pm}) = A_B \frac{N_{\chi_{c1}}^B}{N_{J/\psi}^B} \frac{B(B^{\pm} \rightarrow J/\psi K^{\pm})}{B(\chi_{c1} \rightarrow J/\psi \gamma)}$

- (Top) Fit of $m(\mu^+\mu^-K^{\pm}) m(\mu^+\mu^-\gamma) + m_{\chi_{c1}}$ used to extract the corrected yields for the χ_{c1} signal.
- (Bottom) Fit of $m(\mu^+\mu^-K^{\pm})-m(\mu^+\mu^-\gamma) + m_{J/\psi}$ used to extract the corrected yields for the J/ψ signal.
- $B(B^{\pm} \rightarrow \chi_{c1}K^{\pm}) = (4.9 \pm 0.9 \text{ (stat.)} \pm 0.6 \text{ (syst.)}) \times 10^{-4}$.
- World average is $(4.79 \pm 0.23) \times 10^{-4}$ and is dominated by Belle and BaBar measurements.

$\Psi(2S)$ SIMULTANEOUS FITS

NON-PROMPT $\Psi(2S)$ PRODUCTION FRACTION

MEASURED $\Psi(2S)$ DIFFERENTIAL CROSS-SECTION RATIOS

