Inclusive SUSY Searches at CMS

Azeddine Kasmi On behalf of the CMS collaboration Baylor University Pheno 2014

May 5, 2014

Table of Contents

1 Introduction

- 2 Inclusive search with jets and high MET (H_T) (SUS-13-012)
- 3 Hadronic final states using MT2 (SUS-13-019)
- 4 Same-sign dileptons + jets (SUS-13-013)
- 5 Summary and outlook

Many more results can be found at: https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Inclusive search with jets and high MET (H_T) (SUS-13-012) Hadronic final states using MT2 (SUS-13-019) Same-sign dileptons + jets (SUS-13-013) Summary and outlook

Introduction

- Supersymmetry introduces superpartner for every SM particle
 - SM fermions have boson superpartners and vice versa

- SUSY is a broken symmetry: New particles expected in TeV range
- In R-parity conserving models, lightest SUSY particle (LSP) is stable

Inclusive search with jets and high MET (H_T) (SUS-13-012) Hadronic final states using MT2 (SUS-13-019) Same-sign dileptons + jets (SUS-13-013) Summary and outlook

SUSY Production at LHC

- Squark and gluino production by strong force: large cross section at hadron colliders
- $\bullet~$ Results presented are based on $\sim 20~fb^{-1}$ of 8 TeV data

Inclusive search with jets and high MET (H_T) (SUS-13-012) Hadronic final states using MT2 (SUS-13-019) Same-sign dileptons + jets (SUS-13-013) Summarv and outlook

CMS SUSY Results

Inclusive searches have good sensitivities on \tilde{g} and \tilde{q} . See Michael's talk for 3^{rd} generation

/	0-leptons	1-lepton	OSDL /	SSDL	≥3 leptons	2-photons	γ+lepton
	Jets + MET	Single lepton + Jets + MET	Opposite-sign di-lepton + jets + MET	Same-sign di- lepton + jets + MET	Multi-lepton	Di-photon + jet + MET	Photon + lepton + MET
				~ /			

Inclusive search with jets and high MET (H_T) (SUS-13-012) Hadronic final states using MT2 (SUS-13-019) Same-sign dileptons + jets (SUS-13-013) Summary and outlook

The CMS Detector

Multijets + H_T : Baseline Selection

•
$$N_{jets} \geq 3 \; (p_T > 50 \; ext{GeV}, \; |\eta| < 2.5)$$

•
$$H_T > 500 \text{ GeV} \left(\sum_{i}^{j \to \infty} |p_{T,i}| \right) (p_T > 50 \text{ GeV}, |\eta| < 2.5)$$

•
$$mathstyle{\mathcal{H}_T} \geq 200 \; {\sf GeV} \; (|-\sum\limits_i^{j \in r} p_{\vec{ au},i}|) \; (p_T > 30 \; {\sf GeV}, \; |\eta| < 5)$$

Δφ (H_T, jet_{1,2,3}) > (0.5, 0.5, 0.3) (To reduce QCD)

A. Kasmi PHENO 2014

• Veto isolated leptons (e/μ) with $p_T > 10$ GeV (To reduce W and $t\bar{t}$)

Analysis performed in 36 exclusive bins in (N_{jets}, H_T, H_T) Pure data-MC comparison: reasonable agreement

Inclusive SUSY Searches at CMS

Multijets + H_T : W+ jets and $t\bar{t}$

Lost Lepton:

 $t\bar{t}$, W + jets $(e/\mu + \nu)$: e/μ not reconstructed, not isolated, or out of acceptance ("Lost Lepton")

• From events with one e/μ (weighted according to acceptance and detector inefficiencies)

Hadronic Tau:

 $t\overline{t}$, W + jets $(au_{had} +
u)$: Lepton is au (faking a jet)

 Using events with one e/μ; lepton is replaced by "τ-jet" with smeared p_T (according to expected response)

Multijets + H_T : $Z(\rightarrow \nu\nu)$ + jets and QCD

$Z(\rightarrow u u)$ + jets:

- Irreducible background.
- Using γ +jets events (similar kinematics at high boson p_T)
- "Translation" factor (e.g. cross section, acceptance) from simulation

QCD multi-jet:

- Large jet p_T mismeasurement
- From rebalancing and smearing (R+S) of events with measured jet response)

Inclusive SUSY Searches at CMS

Multijets + H_T Results & Interpretation (BR = 100%)

No significant deviation of data from data-driven SM prediction!

Multijets $+ H_T$ Interpretation (BR = 100%)

A. Kasmi PHENO 2014

 $\label{eq:linear} \begin{array}{c} \mbox{Introduction} \\ \mbox{Inclusive search with jets and high MET} (H_T) (SUS-13-012) \\ \mbox{Hadronic final states using MT2 (SUS-13-019)} \\ \mbox{Same-sign dileptons + jets (SUS-13-013)} \\ \mbox{Summary and outlook} \end{array}$

MT2: 0-lepton search using MT2 variable and b-jets

 MT2: tranverse mass to measure the mass of primary pair-produced particles in a situation where both ultimately decay into undetected particles

•
$$(M_T^{(i)})^2 = (m^{vis(i)})^2 + m_{\tilde{\chi}}^2 + 2 (E_T^{vis(i)} E_T^{\chi(i)} - \vec{p_T}^{vis(i)} \cdot \vec{p_T}^{\chi(i)})$$

- $M_{T2}(m_{\tilde{\chi}}) = \min [max(M_T^1, M_T^2)],$ with $\vec{p_T} \tilde{\chi}^{(1)} + \vec{p_T} \tilde{\chi}^{(2)} = \vec{p_T}^{miss}$
- Analysis performed in bins of N_{b−jets}, N_{jets}, H_T, and ∉_T
- Main backgrounds: $Z(\rightarrow \nu\nu)$ + jets, $W(\rightarrow \nu\nu)$ + jets, t \overline{t} , and QCD

MT2: 0-lepton, MT2 variable & b-jets (BR = 100%)

Same-sign (SS) dileptons + jets

Selection:

- 2 SS leptons (e/μ) with $p_T > 10/20$ GeV (low/high p_T)
- $N_{iets} > 2 \ (p_T > 40 \text{ GeV}, \ |\eta| < 2.4)$
- $H_T > 200/250 \text{ GeV} (high/low p_T)$
- $\not\!\!E_T > 50 \text{ GeV} (\text{and} > 0 \text{ for RPV searches})$
- 54 bins in H_T , $\not\!\!E_T$, N_{b-tags} , and N_{iets}

Backgrounds:

- Rare SM bgs from simulation corrected for difference
- Non-prompt from data: events with loosely isolated lepton • are weighted by tight/loose ratio
- Charge mis-ID from data: e^+e^- events are weighted with charge mis-ID probability from simulation

SSD + jets: Results & Interpretation (BR=100%)

Summary and outlook

- Search for physics beyond the Standard Model is one of the main motivations for the LHC experiments
- So far, no significant deviation from SM observed → gluinos of masses with 1-1.4 TeV probed in various final states (squarks of 0.8-1 TeV)
- Run II of the LHC at 13/14 TeV will be crucial for SUSY searches
- Many more CMS results are available
- References:
 - CMS public results: Link

Inclusive search with jets and high MET (H_T) (SUS-13-012) Hadronic final states using MT2 (SUS-13-019) Same-sign dileptons + jets (SUS-13-013)

Summary and outlook

MET+jets Predictions

Table 1: Predicted event yields for the different background components in the search regions defined by H_T , B_T and $N_{\rm bes}$. The uncertainties of the different background sources are added in quadrature to obtain the total uncertainties.

	Selection		$Z \rightarrow \nu \overline{\nu}$	tī/W	tī/W	QCD	Total	Data
Njets	Hr [GeV]	Hr [GeV]		$\rightarrow e, \mu+X$	$\rightarrow \tau_h + X$		background	
3-5	500-800	200-300	1821 ± 387	2211 ± 448	1749 ± 210	307±219	6088±665	6159
3-5	500-800	300-450	994±218	660±133	590±69	35±24	2278±266	2305
3-5	500-800	450-600	273±63	77±17	66.3±9.5	1.3+1.5	418±66	454
3-5	500-800	>600	42±10	9.5 ± 4.0	5.7±1.3	0.1+0.3	57.4±11.2	62
3-5	800-1000	200-300	216±46	278±62	192±33	92±66	777±107	808
3-5	800-1000	300-450	124 ± 26	113±27	84±12	9.9±7.4	330±40	305
3-5	800-1000	450-600	47±11	36.1±9.9	24.1±3.6	0.8+1.3	108 ± 15	124
3-5	800-1000	>600	35.3 ± 8.8	9.0±3.7	10.3 ± 2.0	0.1+0.4	54.8±9.7	52
3-5	1000-1250	200-300	76±17	104±26	66.5±9.9	59±25	305 ± 41	335
3-5	1000-1250	300-450	39.3 ± 8.9	52±14	41±11	5.1 ± 2.7	137 ± 20	129
3-5	1000-1250	450-600	18.1 ± 4.7	6.9±3.2	6.8±2.0	0.5+0.7	32.3±6.1	34
3-5	1000-1250	>600	17.8 ± 4.8	2.4±1.8	2.5±0.8	0.1+0.3	22.8±5.2	32
3-5	1250-1500	200-300	25.3±6.0	31.0±9.5	21.3±4.1	31±13	109±18	98
3-5	1250-1500	300-450	16.7 ± 4.3	10.1 ± 4.4	13.7±7.1	2.3±1.6	42.8 ± 9.5	38
3-5	1250-1500	>450	12.3 ± 3.5	2.3±1.7	27±1.2	0.2+0.5	17.6 ± 4.1	23
3-5	>1500	200-300	10.5 ± 2.9	16.7±6.2	23.5±5.6	35±14	86±17	94
3-5	>1500	>300	10.9 ± 3.1	9.7±4.3	6.6±1.4	2.4 ± 2.0	29.7±5.8	39
6-7	500-800	200-300	22.7±6.4	133±59	117 ± 25	18.2±9.2	290±65	266
6-7	500-800	300-450	9.9±3.2	22±11	18.0 ± 5.1	1.9 ± 1.7	52±12	62
6-7	500-800	>450	0.7±0.6	0.0^{+32}_{-00}	0.1+05	0.0+0.1	0.8+33	9
6-7	800-1000	200-300	9.1±3.0	56±25	46±11	13.1±6.6	124±29	111
6-7	800-1000	300-450	4.2±1.7	10.4 ± 5.5	12.0 ± 3.6	1.9 ± 1.4	28.6±6.9	35
6-7	800-1000	>450	1.8±1.0	2.9 ± 2.5	1.2±0.8	0.1+0.4	6.0±2.8	- 4
6-7	1000-1250	200-300	4.4±1.7	24±12	29.5±7.8	11.9 ± 6.0	70±16	67
6-7	1000-1250	300-450	3.5 ± 1.5	8.0±4.7	8.6±2.7	1.5 ± 1.5	21.6±5.8	20
6-7	1000-1250	>450	1.4 ± 0.8	0.0+36	0.6+0.8	0.1+0.4	2.2+3.8	4
6-7	1250-1500	200-300	3.3±1.4	11.5±6.5	6.4±2.7	6.8±3.9	28.0 ± 8.2	24
6-7	1250-1500	300-450	1.4 ± 0.8	3.5 ± 2.6	3.5±1.9	0.9+1.3	9.4 ± 3.6	5
6-7	1250-1500	>450	0.4 ± 0.4	0.0+2.5	0.1+0.5	0.1+0.3	0.5+26	2
6-7	>1500	200-300	1.3 ± 0.8	10.0±6.9	2.0±1.2	7.8±4.0	21.1±8.1	18
6-7	>1500	>300	1.1±0.7	3.2±2.8	2.8±1.9	$0.8^{+1.1}_{-0.5}$	7.9 ± 3.6	3
28	500-800	>200	0.0+0.8	1.9±1.5	2.8±1.4	0.1+0.4	4.8+23	8
≥8	800-1000	>200	0.6±0.6	4.8±2.9	2.3±1.2	0.5+0.9	8.3+34	9
≥ 8	1000-1250	>200	0.6 ± 0.5	1.4+15	2.9±1.3	0.7+1.0	5.6+2.3	8
≥8	1250-1500	>200	0.0+0.9	5.1 ± 3.5	1.4±0.9	0.5+0.9	7.1+38	5
≥8	>1500	>200	0.0+0.7	0.0+42	2.4±1.4	0.9+1.3	3.3+47	2

Summary and outlook

Multijets + H_T Results: bin 20

No significant deviation of data from data-driven SM prediction!

• One bin shows an excess !

- $N_{bkg} = 0.7 \pm 1.8$ and $N_{data} = 9$
- $p_{local} \sim 0.004
 ightarrow 2.7\sigma$
- $p_{global} \sim 0.11
 ightarrow 1.2 \sigma$

SS Search Bins

N _{b-jets}	$E_{\rm T}^{\rm miss}$ (GeV)	Njets	$H_{\rm T} \in [200, 400] ({\rm GeV})$	$H_{\rm T} > 400 ({\rm GeV})$
	50 120	2–3	SR01	SR02
- 0	50-120	≥4	SR03	SR04
-0	>120	2–3	SR05	SR06
	>120	≥4	SR07	SR08
	50 120	2–3	SR11	SR12
- 1	50-120	≥4	SR13	SR14
- 1	> 120	2–3	SR15	SR16
	>120	≥4	SR17	SR18
	50 120	2–3	SR21	SR22
>2	50-120	≥4	SR23	SR24
24	>120	2–3	SR25	SR26
	>120	≥4	SR27	SR28

SS Predictions

Dealar	Low-p _T				High-p _T			
Region	Expected		Observed	Expected			Observed	
SR01	44	±	16	50	51	±	18	48
SR02	SR02 12 ± 4		17	9.0 ± 3.5		3.5	11	
SR03	12	±	5	13	8.0	±	3.1	5
SR04	SR04 9.1 ±		3.4	4	5.6	±	2.1	2
SR05	21	±	8	22	20	±	7	12
SR06	13	±	5	18	9	±	4	11
SR07	3.5	±	1.4	2	2.4	±	1.0	1
SR08	5.8	±	2.1	4	3.6	±	1.5	3
SR11	32	±	13	40	36	±	14	29
SR12	6.0	±	2.2	5	3.8	±	1.4	5
SR13	17	±	7	15	10	±	4	6
SR14	10	±	4	6	5.9	±	2.2	2
SR15	13	±	5	9	11	±	4	11
SR16	5.5	±	2.0	5	3.9	±	1.5	2
SR17	4.2	±	1.6	3	2.8	±	1.1	3
SR18	6.8	±	2.5	11	4.0	±	1.5	7
SR21	7.6	±	2.8	10	7.1	±	2.5	12
SR22	1.5	±	0.7	1	1.0	±	0.5	1
SR23	7.1	±	2.7	6	3.8	±	1.4	3
SR24	4.4	±	1.7	11	2.8	±	1.2	7
SR25	2.8	±	1.1	1	2.9	±	1.1	4
SR26	1.3	±	0.6	2	0.8	±	0.5	1
SR27	1.8	±	0.8	0	1.2	±	0.6	0
SR28	3.4	±	1.3	3	2.2	±	1.0	2

Table 7: Predicted and observed event yields for the low- p_T and high- p_T signal regions.

 $\label{eq:constraint} \begin{array}{l} & \mbox{Introduction} \\ \mbox{Inclusive search with jets and high MET} (\ensuremath{\mathcal{H}_T}\) (SUS-13-012) \\ & \mbox{Hadronic final states using MT2} (SUS-13-019) \\ & \mbox{Same-sign dileptons} + \mbox{jets} (SUS-13-013) \end{array}$

Summary and outlook

MT2: Signal bin definitions

Table 1: Signal bin definitions of the inclusive M_{T2} analysis.

	low H _T region			medium H _T region			high H _T region	
	M _{T2} bin [GeV]			$M_{\rm T2} {\rm bin} [{\rm GeV}]$			M _{T2} bin [GeV]	
2 into	200-240	350-420	570-650	125-150	220-270	425-580	120-150	260-350
2 jets,	240-290	420-490	≥ 650	150-180	270-325	580-780	150-200	350-550
0 D Jets	290-350	490-570		180-220	325-425	\geq 780	200-260	≥ 550
2 jets,	200-250	310-380	450-550	100-135	170-260	≥ 450	100-180	
\geq 1 b jets	250-310	380-450	≥ 550	135-170	260-450		\geq 180	
	200-240	420-490		160-185	300-370	≥ 800	160-185	350-450
3-5 jets,	240-290	490-570		185-215	370-480		185-220	450-650
0 b jets	290-350	570-650		215-250	480-640		220-270	≥ 650
	350-420	≥ 650		250-300	640-800		270-350	
3-5 jets,	200-250	310-380	450-550	150-175	210-270	380-600	150-180	230-350
1 b jets	250-310	380-450	≥ 550	175-210	270-380	≥ 600	180-230	≥ 350
3-5 jets,	200-250	325-425		130-160	200-270	\geq 370	130-200	
2 b jets	250-325	\geq 425		160-200	270-370		≥ 200	
\geq 6 jets,	200-280	\geq 380		160-200	250-325	\geq 425	160-200	≥ 300
0 b jets	280-380			200-250	325-425		200-300	
\geq 6 jets,	200-250	\geq 325		150-190	250-350		150-200	≥ 300
1 b jets	250-325			190-250	≥ 350		200-300	
\geq 6 jets,	200-250	\geq 300		130-170	220-300		120-200	
2 b jets	250-300			170-220	≥ 300		≥ 200	
\geq 3 jets,	200-280	≥ 280		125-175	175-275	≥ 275	$1 \ge 125$	
\geq 3 b jets								

Razor

Define:

$$M_{R} = \sqrt{(|\vec{p_{q1}}| + |\vec{p_{q2}}|)^{2} - (\vec{p_{z,q1}} + \vec{p_{z,q2}})^{2}}$$
and

$$M_{T}^{R} = \sqrt{\frac{E_{T}^{miss}(\vec{p_{T}^{q1}} + \vec{p_{T}^{q2}}) - E_{T}^{\vec{m}iss}(\vec{p_{t}^{q1}} + \vec{p_{T}^{q2}})}{2}}$$
Define the "Razor":

$$R = \frac{M_{T}^{R}}{M_{R}}$$

• For signal: M_R has peak and M_T^R has endpoint at:

$$M_{\Delta} = \frac{M_{\tilde{q}}^2 - M_{\tilde{\chi}_1^0}^2}{M_{\tilde{q}}}$$

• For background: exponentially falling at relevant scales

Razor 2

Extrapolate from background dominated side bands at low M_R and R^2 to "search region" Background model: 2D function of M_R and R^2 Model is fitted in each box indepedently but simultaneously for each b-tag multiplicity Shape parameters (n, M_R^0 , and M_0^2) to describe potential differences between shape in data and simulation Analysis uses unbinned likelihood

Projection of 2D plane on M_R and R^2 axis

No deviation from expectayin

Inclusive search with jets and high MET (H_T) (SUS-13-012) Hadronic final states using MT2 (SUS-13-019) Same-sign dileptons + jets (SUS-13-013) Summary and outlook

Razor 3

