Search for Third Generation Leptoquarks and R-Parity Violating Stops with the CMS Experiment at the LHC

Kevin Pedro (University of Maryland) for the CMS Collaboration May 5, 2014

Introduction

- Searches for pair production of scalar leptoquarks and stops in R-parity violating supersymmetry decaying to third generation particles (t, b, τ)
 - Full 8 TeV CMS 2012 dataset, 19.7 fb⁻¹
 - CMS-EXO-12-030: LQ₃ \rightarrow t + τ search (CDS, twiki)
 - CMS-EXO-12-032: LQ₃ \rightarrow b + τ & RPV stop search (CDS, twiki)

Outline:

- 1. Leptoquarks
- 2. $LQ_3 \rightarrow t + \tau$ results
- 3. $LQ_3 \rightarrow b + \tau$ results
- 4. R-parity violation
- 5. RPV stop results
- 6. Conclusions

Leptoquarks

- Scalar or vector bosons
- Baryon number (B), lepton number (L), color charge, electric charge (Q)
- SU(5) grand unified theory, SU(4) Pati-Salam, compositeness models, superstrings, technicolor
- Intergenerational decays constrained by limits from low-energy processes and flavor-changing neutral current searches
- Expected to decay to leptons and quarks of the same generation
- Pair production cross sections have been calculated to NLO in α_s

$LQ_3 \rightarrow t + \tau Search$

$$Q = -1/3$$

$$\beta(LQ_3 \rightarrow t + \tau) = 1$$

$$\mu^{\pm} \tau_h^{\pm} \ell^{\mp} 2jb\bar{b},$$

$$\mu^{\pm} \tau_h^{\pm} \ell^{\mp} \ell^{\mp} b\bar{b}$$

$$(\ell \in \{e, \mu, \tau\})$$

- Required same-sign $\mu \tau_h$ pair reduces SM backgrounds
- Major background mainly from jets misidentified as τ_h ("fakes") and also from leptons from heavy flavor decays within jets, estimated from data using Loose-to-Tight Extrapolation Method (LTEM): $(\hat{x} = 1 x)$

$$\begin{pmatrix} N_{FF} \\ N_{FP} \\ N_{PP} \end{pmatrix} = \frac{1}{(p_{\mu} - f_{\mu})(p_{\tau} - f_{\tau})} \begin{pmatrix} p_{\mu} \cdot p_{\tau} & -p_{\mu} \cdot \widehat{p_{\tau}} & -\widehat{p_{\mu}} \cdot p_{\tau} & \widehat{p_{\mu}} \cdot \widehat{p_{\tau}} \\ -p_{\mu} \cdot f_{\tau} & p_{\mu} \cdot \widehat{f_{\tau}} & \widehat{p_{\mu}} \cdot f_{\tau} & -\widehat{p_{\mu}} \cdot \widehat{f_{\tau}} \\ -f_{\mu} \cdot p_{\tau} & f_{\mu} \cdot \widehat{p_{\tau}} & \widehat{f_{\mu}} \cdot p_{\tau} & -\widehat{f_{\mu}} \cdot \widehat{p_{\tau}} \\ f_{\mu} \cdot f_{\tau} & -f_{\mu} \cdot \widehat{f_{\tau}} & -\widehat{f_{\mu}} \cdot \widehat{f_{\tau}} \end{pmatrix} \begin{pmatrix} N_{LL} \\ N_{LT} \\ N_{TL} \\ N_{TT} \end{pmatrix}$$

Minor backgrounds estimated from MC

$LQ_3 \rightarrow t + \tau$ Details

- S_T is the scalar sum of p_T for all final state objects (leptons, jets, MET)
- $\mu^{\pm}\tau_h^{\pm} + \ge 2$ jets, $S_T > 400$ GeV
- Split into central and forward channels $(|\tilde{\eta}| < 0.9, |\tilde{\eta}| \ge 0.9)$ based on event centrality

$$\widetilde{|\eta|} = \Theta^{-1} \left(\frac{1}{N_{\mu} + N_{\tau} + N_{e}} \sum_{All \ leptons: \ \ell} \Theta(|\eta_{\ell}|) \right)$$

• Final cuts on S_T and $p_T(\tau_h)$ are optimized for each LQ_3 mass hypothesis using Punzi figure of merit χ (maximize signal-background separation)

- Assuming $\beta(LQ_3 \rightarrow t + \tau) = 1$, pair production of Q = -1/3 scalar LQ_3 excluded at 95% CL for masses up to **550 GeV** (582 GeV expected)
- Leading systematic uncertainty from LTEM: 21-28% (central), 21-36% (forward)

$LQ_3 \rightarrow b + \tau Search$

$$Q = -2/3, -4/3$$

$$LQ_3 \rightarrow b + \tau$$

$$\ell^{\pm} \tau_h^{\mp} b \bar{b} \quad (\ell \in \{e, \mu\})$$

• Reducible background from jets misidentified as τ_h estimated from data

$$N_{\text{misID }\tau}^{(\text{main})} = \sum_{\text{events}}^{(\text{anti-iso})} \frac{1 - \prod_{\tau} [1 - f(p_{\text{T}}(\tau))]}{\prod_{\tau} [1 - f(p_{\text{T}}(\tau))]}$$

• Irreducible background from $t\bar{t}$ + jets with genuine τ_h estimated from data

$$\begin{split} N_{\ell\tau_{h}} &= N_{e\mu} \times \frac{\varepsilon_{\ell\tau_{h}}^{\rm sel} \rho_{\ell\tau_{h}}^{\rm sel}}{\varepsilon_{e\mu}^{\rm sel} \rho_{e\mu}^{\rm sel}} \times \frac{\varepsilon_{\ell}^{\rm ID} \varepsilon_{\tau_{h}}^{\rm ID}}{\varepsilon_{e}^{\rm ID} \varepsilon_{\mu}^{\rm ID}} \\ &\times \frac{\mathcal{A}_{\ell\tau_{h}} B_{W\ell} B_{W\tau_{h}} + \mathcal{A}_{\tau_{\ell}\tau_{h}} B_{W\tau_{\ell}} B_{W\tau_{h}}}{\mathcal{A}_{e\mu} B_{We} B_{W\mu} + \mathcal{A}_{\mu\tau_{e}} B_{W\mu} B_{W\tau_{e}} + \mathcal{A}_{e\tau_{\mu}} B_{We} B_{W\tau_{\mu}} + \mathcal{A}_{\tau_{e}\tau_{\mu}} B_{W\tau_{e}} B_{W\tau_{\mu}}} \end{split}$$

Minor backgrounds estimated from MC

$LQ_3 \rightarrow b + \tau$ Details

- S_T is the scalar sum of p_T for all required final state objects (e/ μ , τ_h , 2 jets)
- $e^{\pm}/\mu^{\pm} + \tau_h^{\mp} + \ge 2$ jets, with at least 1 jet b-tagged
- Require mass of the τ_h and a paired jet, $M(\tau,j)$, to be greater than 250 GeV
 - Pairing is chosen to minimize the difference between the mass of the tau and one jet and the mass of the e/μ and the other jet
- Limits are set using the S_T distribution

$LQ_3 \rightarrow b + \tau Results$

- Assuming B(LQ₃ \rightarrow b + τ) = 1, pair production of Q = -2/3 or -4/3 scalar LQ₃ excluded at 95% CL for masses up to **740 GeV** (754 GeV expected)
- > 95% CL limits also calculated for varying branching fraction (right)
- Leading systematic uncertainties from data-driven background estimations: 16% (reducible), 19-21% (irreducible)

R-Parity Violation

- R-parity is a discrete symmetry which separates SM and SUSY particles
- R-parity violation allows SUSY particles to decay to final states containing only SM particles; RPV SUSY still solves the hierarchy problem

$$W \ni \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c + \mu_i L_i H_u$$

$$- - \frac{\tilde{q}}{L} - \frac{\tilde$$

- These decays present signatures without high MET, avoiding strong limits on much of the parameter space of R-parity conserving SUSY
- Stops and higgsinos are typically lighter than the other scalar SUSY particles in natural models
- ➤ Third generation of superpartners potentially accessible at LHC energies
- Searches consider simplified models with other SUSY particles decoupled

RPV Stop Searches

• Limits on pair production of stops decaying directly through λ'_{333} coupling can be extracted from $LQ_3 \rightarrow b + \tau$ search

• Limits on pair production of sbottoms decaying directly through λ'_{333} coupling can be extracted from $LQ_3 \rightarrow t + \tau$ search

- Produces final state similar to LQ₃ \rightarrow b + τ search, but with extra jets: $\ell^{\pm}\tau_{\rm h}^{\mp}b\bar{b}4j \ (\ell \in \{e,\mu\})$
- Search proceeds in same way, but requires $N_{jet} \ge 5$ (instead of $M(\tau,j)$ cut)
- S_T is the scalar sum of p_T for all required final state objects (e/ μ , τ_h , 5 jets)

RPV Stop Results

- Assuming 100% branching fraction for the chargino-mediated decay of the stop involving the λ'_{3jk} coupling, pair production of stops excluded at 95% CL for masses up to **576 GeV** (588 GeV expected)
- Leading systematic uncertainties from data-driven background estimations: 23-24% (reducible), 20-22% (irreducible)

Conclusions

- Results were obtained using the full 8 TeV CMS 2012 dataset, 19.7 fb⁻¹
- Pair production of third generation scalar leptoquarks with $\mathbf{Q} = -1/3$ has been excluded for masses up to 550 GeV, assuming $\beta(LQ_3 \rightarrow t + \tau) = 1$
- Pair production of third generation scalar leptoquarks with $\mathbf{Q} = -2/3, -4/3$ has been excluded for masses up to **740 GeV**, assuming $\beta(\mathbf{LQ}_3 \to \mathbf{b} + \tau) = 1$
- Limits for $LQ_3 \rightarrow b + \tau$ are also set for varying branching fraction
- > These limits are the most stringent to date
- Limits on RPV stops and sbottoms decaying via λ'_{333} can be extracted from the LQ₃ \rightarrow b + τ and LQ₃ \rightarrow t + τ searches, respectively
- Pair production of RPV stops with a chargino-mediated decay involving λ'_{3jk} has been excluded for masses up to **576 GeV**, assuming a branching fraction of 100%
- > This is the first direct search for stops decaying to such a final state
- ❖ Stay tuned for 13 TeV results, including new RPV SUSY searches and reinterpretations!

Backup

References

- 1. W. Buchmüller, R. Rückl, and D. Wyler, "Leptoquarks in lepton-quark collisions", *Phys. Lett. B* 191 (1987), no. 4, 442 448.
- 2. S. Davidson, D. Bailey, B. Campbell, "Model independent constraints on leptoquarks from rare processes", *Z. Phys. C* 61, 613-643 (1994).
- 3. M. Krämer, T. Plehn, M. Spira, and P. M. Zerwas, "Pair production of scalar leptoquarks at the CERN LHC", *Phys. Rev. D* 71 (Mar, 2005) 057503
- 4. J. Evans and Y. Kats, "LHC searches examined via the RPV MSSM", in *The 2013 European Physical Society Conference on High Energy Physics*. SISSA, 2013. arXiv:1311.0890. PoS(EPS2013)287.
- 5. R. Barbier et al., "R-Parity-violating supersymmetry", *Physics Reports* 420 (2005), no. 16, 1 195.
- 6. CMS Collaboration, "Performance of tau-lepton reconstruction and identification in CMS", *JINST* 7 (2012) 01001.
- 7. A. L. Read, "Modified frequentist analysis of search results (the CLs method)", CERN Report CERN-OPEN-2000-005, 2000.

For full lists of references, see the Physics Analysis Summaries from CMS-EXO-12-030, CMS-EXO-12-032 (CDS links on slide 2).

Hadron Plus Strips Algorithm

- ~65% of tau leptons will decay to hadrons, typically producing:
 - 1 or 3 charged hadrons $(\pi^{\pm}, \kappa^{\pm})$
 - 0 or more neutral hadrons (π^0)
 - v_{τ}

- CMS uses the **Hadron Plus Strips** (HPS) algorithm to reconstruct τ_h decays
 - 1. Start from a Particle Flow jet
 - 2. Photons from π^0 decays are reconstructed as electromagnetic strips, to account for conversions in the tracker
 - 3. Identified strips are combined with charged hadrons
 - 4. Four-momenta of the constituent particles are reconstructed according to decay and mass hypotheses
 - 5. Isolation is computed using the p_T of nearby charged hadron and photon candidates, with a $\Delta\beta$ pileup correction
 - 6. Discriminators are applied to reject electrons or muons misidentified as hadronic taus

Backgrounds

$LQ_3 \rightarrow t + \tau$:

- Major reducible background from misidentified leptons, especially jets misidentified as τ_h (e.g. $t\bar{t}$ + jets, W + jets)
- Minor irreducible backgrounds: SM processes with genuine same-sign dilepton pairs (e.g. VV, tt W, tt Z, W±W±qq)
- Minor reducible background: Charge-mismeasured dilepton events (e.g. \mathbb{Z}/γ^* + jets)

$LQ_3 \rightarrow b + \tau$:

- Major reducible background from jets misidentified as τ_h (tt + jets, W + jets, Z + jets, QCD multijets)
- Major irreducible background from $t\bar{t}$ + jets with genuine τ_h
- Minor backgrounds: VV, single top, $Z \rightarrow \tau^+\tau^- + jets$, and processes where a lepton is misidentified as a τ_h ($t\bar{t} + jets$, Z + jets)

MC simulation:

- *PYTHIA6*: LQ, stop, VV, QCD
- *MADGRAPH*: tt, V + jets, tt V, W[±]W[±]qq
- *POWHEG*: single top
- TAUOLA is used for processes containing real taus

Loose-to-Tight Extrapolation Method

$$\begin{pmatrix} N_{LL} \\ N_{LT} \\ N_{TL} \\ N_{TT} \end{pmatrix} = \begin{pmatrix} \widehat{f}_{\mu} \cdot \widehat{f}_{\tau} & \widehat{f}_{\mu} \cdot \widehat{p}_{\tau} & \widehat{p}_{\mu} \cdot \widehat{f}_{\tau} & \widehat{p}_{\mu} \cdot \widehat{p}_{\tau} \\ \widehat{f}_{\mu} \cdot \widehat{f}_{\tau} & \widehat{f}_{\mu} \cdot \widehat{p}_{\tau} & \widehat{p}_{\mu} \cdot \widehat{f}_{\tau} & \widehat{p}_{\mu} \cdot \widehat{p}_{\tau} \\ f_{\mu} \cdot \widehat{f}_{\tau} & f_{\mu} \cdot \widehat{p}_{\tau} & p_{\mu} \cdot \widehat{f}_{\tau} & p_{\mu} \cdot \widehat{p}_{\tau} \\ f_{\mu} \cdot \widehat{f}_{\tau} & f_{\mu} \cdot \widehat{p}_{\tau} & p_{\mu} \cdot \widehat{f}_{\tau} & p_{\mu} \cdot \widehat{p}_{\tau} \\ N_{PP} \end{pmatrix} \begin{pmatrix} N_{FF} \\ N_{FP} \\ N_{PP} \end{pmatrix} = \frac{1}{(p_{\mu} - f_{\mu})(p_{\tau} - f_{\tau})} \begin{pmatrix} p_{\mu} \cdot p_{\tau} & -p_{\mu} \cdot \widehat{p}_{\tau} & -\widehat{p}_{\mu} \cdot \widehat{p}_{\tau} & \widehat{p}_{\mu} \cdot \widehat{p}_{\tau} \\ -p_{\mu} \cdot \widehat{f}_{\tau} & p_{\mu} \cdot \widehat{f}_{\tau} & \widehat{p}_{\mu} \cdot \widehat{f}_{\tau} & -\widehat{p}_{\mu} \cdot \widehat{f}_{\tau} \\ -f_{\mu} \cdot p_{\tau} & f_{\mu} \cdot \widehat{p}_{\tau} & \widehat{f}_{\mu} \cdot p_{\tau} & -\widehat{f}_{\mu} \cdot \widehat{p}_{\tau} \\ f_{\mu} \cdot f_{\tau} & -f_{\mu} \cdot \widehat{f}_{\tau} & \widehat{f}_{\mu} \cdot \widehat{f}_{\tau} & \widehat{f}_{\mu} \cdot \widehat{f}_{\tau} \end{pmatrix} \begin{pmatrix} N_{LL} \\ N_{LT} \\ N_{TL} \\ N_{TT} \end{pmatrix}$$

Yields are denoted as $N_{(\mu)(\tau)}$, where (μ) is status of the muon and (τ) is status of the τ_h

• tight selection = loose selection + stricter isolation

L: lepton passing loose selection but not tight selection

T: lepton passing loose selection and tight selection

P: prompt lepton (from W or Z decay, well-isolated)

F: fake lepton (from misreconstructed jets or from heavy flavor decay within jets)

f: fake rate (probability that a fake lepton is T), f = 1 - f

p: prompt rate (probability that a prompt lepton is T), $\hat{p} = 1 - p$

$LQ_3 \rightarrow t + \tau$ Systematic Uncertainties

- Reducible background estimation: 21-28% (central), 21-36% (forward)
 - from propagation of uncertainties on prompt rates and fake rates
- Irreducible background normalization: 20-30%
 - from data/MC agreement in signal-depleted region or theoretical uncertainties on NLO cross-sections
- τ_h ID efficiency: 6%, μ ID: 1%, trigger matching: 0.5%
- Luminosity: 2.6%, pileup: 1% (central), 2.5% (forward)
- Jet ES: 4.0-6.7% (background), 1.8-7.8% (signal) τ_h ES: 4.5-8.7% (background), 0.4-3.8% (signal)
 - ES: energy scale
 - jet ES depends on p_T and η
- Signal acceptance: 1.7-13.1% (central), 2.1-20.8% (forward)
 - from PDF uncertainties in production, using CTEQ6L1
- Signal cross-section: 15-33%
 - from PDF uncertainties, normalization/factorization scale uncertainties

$LQ_3 \rightarrow t + \tau$ Results Table

M_{LQ_3}	Tau p _T	S_{T}	N_{Bckg}^{PP}	$N_{ m Bckg}^{ m Exp}$	N^{Obs}	Z-Score	$N_{LQ_3}^{Exp}$	$\epsilon_{ ext{LQ}_3}$
(GeV)	(GeV)	(GeV)	±stat.	$\pm stat. \pm sys.$	$\pm stat.$		±stat.	%
			Central Channel: $ \widetilde{\eta} < 0.9$					
200	35	410	8.51±0.98	$127.71\pm5.35\pm25.48$	105	-1.0	52.61 ± 20.55	0.08
250	35	410	8.51 ± 0.98	$127.71\pm5.35\pm25.48$	105	-1.0	251.88 ± 24.41	1.31
300	50	470	4.21 ± 0.51	$39.91\pm2.92\pm8.25$	27	-1.5	153.46 ± 11.08	2.22
350	50	490	4.04 ± 0.50	$34.62\pm2.73\pm7.14$	25	-1.2	92.44 ± 5.56	3.29
400	65	680	0.91 ± 0.20	$7.20 \pm 1.15 \pm 1.74$	4	-1.0	28.36 ± 2.07	2.27
450	65	700	0.78 ± 0.18	$6.34 \pm 1.08 \pm 1.56$	4	-0.8	17.27 ± 1.10	2.90
500	65	770	0.47 ± 0.15	$3.23\pm0.81\pm0.76$	4	+0.5	9.76 ± 0.59	3.25
550	65	800	0.38 ± 0.14	$2.73\pm0.75\pm0.63$	4	+0.7	6.13 ± 0.34	3.89
600	65	850	0.20 ± 0.08	$1.76\pm0.61\pm0.44$	3	+0.9	3.61 ± 0.19	4.20
650	65	850	0.20 ± 0.08	$1.76\pm0.61\pm0.44$	3	+0.9	2.19 ± 0.11	4.54
700	85	850	0.12 ± 0.07	$1.08\pm0.49\pm0.25$	2	+0.8	1.28 ± 0.06	4.60
750	85	850	0.12 ± 0.07	$1.08\pm0.49\pm0.25$	2	+0.8	0.82 ± 0.04	5.01
800	85	850	0.12 ± 0.07	$1.08\pm0.49\pm0.25$	2	+0.8	0.51 ± 0.02	5.19
			Forward Channel: $ \widetilde{\eta} \ge 0.9$					
200	35	410	4.20 ± 0.52	$71.94 \pm 4.16 \pm 14.61$	87	+1.1	_	_
250	35	410	4.20 ± 0.52	$71.94 \pm 4.16 \pm 14.61$	87	+1.1	50.21 ± 10.53	0.26
300	50	470	1.77 ± 0.31	$20.28\pm2.15\pm3.87$	23	+0.5	33.42 ± 5.23	0.48
350	50	490	1.68 ± 0.30	$18.16\pm2.02\pm3.53$	19	+0.2	18.45 ± 2.51	0.66
400	65	680	0.71 ± 0.20	$2.71 \pm 0.68 \pm 0.57$	1	-0.9	6.11 ± 0.95	0.49
450	65	700	0.71 ± 0.20	$2.33 \pm 0.63 \pm 0.44$	1	-0.7	3.84 ± 0.54	0.64
500	65	770	0.53 ± 0.14	$1.19\pm0.43\pm0.23$	1	0.0	1.61 ± 0.24	0.54
550	65	800	0.42 ± 0.13	$0.89 \pm 0.38 \pm 0.16$	1	+0.3	1.15 ± 0.15	0.73
600	65	850	0.27 ± 0.10	$0.57 \pm 0.33 \pm 0.12$	1	+0.6	0.56 ± 0.08	0.65
650	65	850	0.27 ± 0.10	$0.57 \pm 0.33 \pm 0.12$	1	+0.6	0.29 ± 0.04	0.60
700	85	850	0.14 ± 0.06	$0.36 \pm 0.22 \pm 0.08$	0	-0.4	0.18 ± 0.02	0.65
750	85	850	0.14 ± 0.06	$0.36 \pm 0.22 \pm 0.08$	0	-0.4	0.13 ± 0.02	0.79
800	85	850	0.14 ± 0.06	$0.36 \pm 0.22 \pm 0.08$	0	-0.4	0.08 ± 0.01	0.81

Reducible Bkg. Est. (LQ₃ \rightarrow b + τ)

The reducible background from jets misidentified as τ_h can be estimated from data using two control samples:

- 1. $Z \rightarrow \mu^+\mu^- + jets$
- 2. Events in which all τ_h objects fail isolation ("anti-isolated")

$$f(p_{\mathrm{T}}(\tau)) = \frac{N_{\mathrm{iso}\;\tau}^{(Z\to\mu^+\mu^-)}(p_{\mathrm{T}}(\tau))}{N_{\mathrm{all}\;\tau}^{(Z\to\mu^+\mu^-)}(p_{\mathrm{T}}(\tau))}$$

$$N_{\mathrm{misID}\;\tau}^{(\mathrm{main})} = \sum_{\mathrm{events}}^{(\mathrm{anti-iso})} \frac{1 - \prod_{\tau} [1 - f(p_{\mathrm{T}}(\tau))]}{\prod_{\tau} [1 - f(p_{\mathrm{T}}(\tau))]}$$
 from anti-isolated control region (in each $\ell\tau_{\mathrm{h}}$ channel)

Yield in signal region is calculated from anti-isolated control sample (mostly misidentified jets) using misidentification probability $f(p_T(\tau))$ for weighting

Irreducible t\(T\) Bkg. Est. $(LQ_3 \rightarrow b + \tau)$

The e μ control region can be used to estimate the irreducible $t\bar{t}$ background (containing real taus) from data for the $\ell\tau$ channels.

$$N_{\ell\tau_{h}} = N_{e\mu}$$

$$\times \frac{\varepsilon_{\ell\tau_{h}}^{\rm sel} \rho_{\ell\tau_{h}}^{\rm sel}}{\varepsilon_{e\mu}^{\rm sel} \rho_{e\mu}^{\rm sel}} \longrightarrow \text{t} \text{t} \text{simulation, scale factors on control samples}$$

$$\times \frac{\varepsilon_{\ell}^{\rm ID} \varepsilon_{\tau_{h}}^{\rm ID}}{\varepsilon_{\ell}^{\rm ID} \varepsilon_{\tau_{h}}^{\rm ID}} \longrightarrow \text{t} \text{t} \text{simulation (with scale factors)}$$

$$\times \frac{A_{\ell\tau_{h}} B_{W\ell} B_{W\tau_{h}} + A_{\tau_{\ell}\tau_{h}} B_{W\tau_{\ell}} B_{W\tau_{h}}}{A_{\ell\mu} B_{W\ell} B_{W\mu} + A_{\mu\tau_{e}} B_{W\mu} B_{W\tau_{e}} + A_{\ell\tau_{\mu}} B_{W\ell} B_{W\tau_{\mu}} + A_{\tau_{e}\tau_{\mu}} B_{W\tau_{e}} B_{W\tau_{\mu}}}$$

$$\longrightarrow \text{Madgraph, PDG}$$

The yield from the e μ channel is multiplied by a combination of selection efficiencies, data/MC scale factors, identification efficiencies, acceptances, and branching ratios. This relates the e μ channel to the $\ell\tau$ channels for $\ell=e, \mu$.

$LQ_3 \rightarrow b + \tau$ Systematic Uncertainties

- Reducible background estimation: 16-24%
 - from statistical uncertainty on fake rate, variation in fake rate for tt events, variation in fake rate when requiring extra jets
- Irreducible background estimation: 19-22%
 - from statistical uncertainty in control samples, propagation of uncertainties on acceptances, efficiencies, and scale factors
- Small backgrounds: 20-50%
 - due to limited number of MC events and normalization uncertainties
- b-tagging efficiency: ~4% (2% on signal, 0-2% on backgrounds), mistagging probability: ~10% (2% on signal, 2-7% on backgrounds) (dependent on p_T and η)
- τ_h ID efficiency: 6%, e/ μ ID: 2%, trigger efficiency: 2%
- Luminosity: 2.6%, pileup: 3%, ISR/FSR: 4% (signal only)
- Jet ES: 2-4%, jet ER: 5-10%, τ_h ES: 3%, τ_h ER: 10%
 - ES: energy scale, ER: energy resolution
 - Jet ES depends on p_T and η , jet ER depends on η
 - These uncertainties also affect S_T distributions

$LQ_3 \rightarrow b + \tau \& RPV Stop Results Tables$

LQ₃ \rightarrow b + τ , and RPV stop decaying through λ'_{333}

	$\mu au_{ m h}$ Channel	eτ _h Channel	
tt̄ (irreducible)	66.7 ± 12.6	105.6 ± 18.1	
Reducible	117.3 ± 18.9	147.8 ± 33.0	
$Z(\ell\ell/\tau\tau)$ +jets	$7.5 \pm 4.6 \pm 0.2$	$21.4 \pm 7.4 \pm 4.9$	
Single-t	$17.3 \pm 2.8 \pm 4.7$	$16.0 \pm 2.8 \pm 4.4$	
VV	$2.6 \pm 0.5 \pm 0.8$	$4.1 \pm 0.6 \pm 1.3$	
Total Bkg.	$211.4 \pm 5.4 \pm 23.4$	$294.9 \pm 7.9 \pm 39.1$	
Observed	216	289	
Signal (500 GeV)	$51.6 \pm 1.3 \pm 5.3$	$57.7 \pm 1.4 \pm 5.9$	
Signal (600 GeV)	$17.7 \pm 0.4 \pm 1.6$	$20.1 \pm 0.5 \pm 1.9$	
Signal (700 GeV)	$6.2 \pm 0.1 \pm 5.5$	$7.1 \pm 0.2 \pm 6.3$	
Signal (800 GeV)	$2.3 \pm 0.1 \pm 0.2$	$2.7 \pm 0.1 \pm 0.2$	

RPV stop, charginomediated decay involving λ'_{3ik} (j,k = 1,2)

	$\mu au_{ m h}$ Channel	$e au_{ m h}$ Channel	
tt̄ (irreducible)	55.0 ± 9.5	88.3 ± 13.7	
Reducible	59.8 ± 13.8	65.7 ± 16.4	
$Z(\ell\ell/\tau\tau)$ +jets	$11.6 \pm 5.5 \pm 2.7$	$4.9 \pm 2.5 \pm$	
Single-t	$3.5 \pm 1.3 \pm 0.9$	$3.9 \pm 1.5 \pm$	
VV	$0.4 \pm 0.2 \pm 0.1$	$0.6 \pm 0.2 \pm 0.2$	
Total Bkg.	$130.3 \pm 5.6 \pm 17.1$	$162.5 \pm 2.9 \pm 21.5$	
Observed	123	156	
Signal (300 GeV)	$82.8 \pm 8.0 \pm 11.7$	$94.3 \pm 8.5 \pm 13.2$	
Signal (400 GeV)	$38.3 \pm 2.3 \pm 3.8$	$43.9 \pm 2.6 \pm 4.3$	
Signal (500 GeV)	$15.4 \pm 0.7 \pm 1.5$	$19.4 \pm 0.8 \pm 1.8$	
Signal (600 GeV)	$5.7 \pm 0.3 \pm 0.5$	$6.9 \pm 0.9 \pm 0.7$	

CL_s Limits from S_T Distribution

- Null hypothesis H₀: b, background-only Signal hypothesis H₁: s + b, signal + background
- $P(\theta; N_H)$: Poisson probability to observe θ events in data given the hypothesis H which predicts N_H events, accounting for nuisance parameters
- Define the test statistic Q using the binned S_T distribution, split into $e\tau_h$ and $\mu\tau_h$ channels:

$$Q = \prod_{i}^{\text{(channel)}} \prod_{j}^{(S_{\text{T}} \text{ bin})} \frac{P_{i,j}(\theta; N_{H_1})}{P_{i,j}(\theta; N_{H_0})}$$

• Perform numerous pseudo-experiments, varying θ , to compute a distribution of Q values for each hypothesis; compute Q with $\theta = N_{obs}$ to get Q_{obs}

25

• Calculate CL_s as follows:

$$CL_{s+b} = P(Q \le Q_{\text{obs}}|H_1)$$

 $CL_b = P(Q \le Q_{\text{obs}}|H_0)$
 $CL_s = CL_{s+b}/CL_b$

- Repeat the calculation of CL_s for different signal mass hypotheses
- Masses with $CL_s \le 1 \alpha$ are excluded at the α confidence level Pheno2014 (CMS-EXO-12-032) Kevin Pedro